Skip to main content
Log in

The role of orbital transformations in coupled-pair functionals

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The replacement of single excitations by orbital transformations in coupled-pair functionals derived from a single double configuration interaction approach is discussed. It is demonstrated that this modification leads to considerably improved density matrices and better agreement with results from coupled cluster singles doubles calculations taken as a reference. A comparison between the variationally optimized orbitals and the Brueckner orbitals shows that these two sets of orbitals are different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. http://srdata.nist.gov/cccbdb.

References

  1. Langhoff SR, Davidson ER (1974) Int J Quantum Chem 8:61

    Article  CAS  Google Scholar 

  2. Davidson ER, Silver DW (1977) Chem Phys Lett 52:403

    Article  CAS  Google Scholar 

  3. Bartlett RJ, Shavitt I (1977) Int J Quantum Chem Quantum Chem Symp 11:165

    CAS  Google Scholar 

  4. Siegbahn PEM (1978) Chem Phys Lett 55:386

    Article  CAS  Google Scholar 

  5. Meissner L (1988) Chem. Phys Lett 146:204

    Article  CAS  Google Scholar 

  6. Pople JA, Seeger R, Krishnan R (1977) Int J Quantum Chem Quantum Chem Symp 11: 149

    Article  CAS  Google Scholar 

  7. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  8. Meyer W (1973) J Chem Phys 58:1017

    Article  CAS  Google Scholar 

  9. Kelly HP (1964) Phys Rev 134:A1450

    Article  Google Scholar 

  10. Ahlrichs R (1979) Comp Phys Commun 17:31

    Article  CAS  Google Scholar 

  11. Kutzelnigg W (1977) In: Methods of electronic structure theory. Schaefer HF III (ed) Plenum Press, New York, pp 129–188

  12. C̆iz̆ek J (1966) J Chem Phys 5:4256

    Google Scholar 

  13. C̆iz̆ek J (1969) Adv Chem Phys 14:35

    Google Scholar 

  14. Bartlett RJ (1981) Annu Rev Phys Chem 32:359

    Article  CAS  Google Scholar 

  15. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Article  CAS  Google Scholar 

  16. Nesbet RK (1958) Phys Rev 109:1632

    Article  CAS  Google Scholar 

  17. Handy NC, Pople JA, Head-Gordon M, Raghavachari K, Trucks GW (1989) Chem Phys Lett 164:185

    Article  CAS  Google Scholar 

  18. Pulay P (1983) Int J Quantum Chem Quantum Chem Symp 17:257

    CAS  Google Scholar 

  19. Ahlrichs R, Scharf P, Ehrhardt C (1985) J Chem Phys 82:890

    Article  CAS  Google Scholar 

  20. Gdanitz RJ, Ahlrichs R (1988) Chem Phys Lett 143:413

    Article  CAS  Google Scholar 

  21. Szalay PG, Bartlett RJ (1993) Chem Phys Lett 214:481

    Article  CAS  Google Scholar 

  22. Handy NC, Schaefer HF III (1984) J Chem Phys 81:5031

    Article  CAS  Google Scholar 

  23. Kollmar C (2006) J Chem Phys 125:084108

    Article  Google Scholar 

  24. Nooijen M, Le Roy RJ (2006) J Mol Struct (Theochem) 768:25

    Article  CAS  Google Scholar 

  25. Wennmohs F, Neese F (2008) Chem Phys 343:217

    Article  CAS  Google Scholar 

  26. Bak KL, Jørgensen P, Ohlsen J, Helgaker T, Klopper W (2000) J Chem Phys 112:9229

    Article  CAS  Google Scholar 

  27. Neese F, Hansen A, Wennmohs F, Grimme S (2008) Acc Chem Res 42:641

    Article  Google Scholar 

  28. Ahlrichs R, Driessler F, Lischka H, Staemmler V, Kutzelnigg W (1975) J Chem Phys 62:1235

    Article  CAS  Google Scholar 

  29. Hrušák J, Ten-no S, Iwata S (1997) J Chem Phys 106:7185

    Article  Google Scholar 

  30. Gdanitz RJ (2001) Int J Quantum Chem 85:281

    Article  CAS  Google Scholar 

  31. Pulay P, Saebø S, Meyer W (1997) J Chem Phys 81:1901

    Article  Google Scholar 

  32. Hampel C, Peterson KA, Werner HJ (1992) Chem Phys Lett 190:1

    Article  CAS  Google Scholar 

  33. Eugene DePrince A III, Mazziotti DA (2007) Phys Rev A 76:042501

    Article  Google Scholar 

  34. DePrince AE III, Mazziotti DA (2007) Phys Rev A 76:042501

    Article  Google Scholar 

  35. Mazziotti DA (2008) Phys Rev Lett 101:253002

    Article  Google Scholar 

  36. Scuseria GE, Schaefer HF III (1987) Chem Phys Lett 142:354

    Article  CAS  Google Scholar 

  37. Jørgensen P, Simons J (1981) Second quantization based methods in quantum chemistry. Academic Press, New York, pp 10–13

  38. Levy B (1969) Chem Phys Lett 4:17

    Article  CAS  Google Scholar 

  39. Brenig W (1957) Nucl Phys 4:363

    Article  Google Scholar 

  40. Kutzelnigg W, Smith V (1964) The independent-particle model for many–electron systems. I. Comparison of different independent particle model approximations. Preprint No. 130, Quantum Chemistry Group, Uppsala

  41. Sherill CD, Krylov AI, Byrd EFC, Head-Gordon M (1998) J Chem Phys 109:4171

    Article  Google Scholar 

  42. Dykstra CE (1977) Chem Phys Lett 45:466

    Article  CAS  Google Scholar 

  43. Köhn A, Olsen J (2005) J Chem Phys 122:084116

    Article  Google Scholar 

  44. Bartlett RJ, Musial M (2007) Rev Mod Phys 79:291

    Article  CAS  Google Scholar 

  45. Werner HJ, Knowles PJ, Lindh R, Manby FR, Schütz M et al (2006) Molpro, version 2006.1, a package of ab initio programs. See http://www.molpro.net

  46. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  47. Ernzerhof M, Marian CM, Peyerimhoff SD (1993) Chem Phys Lett 204:59

    Article  CAS  Google Scholar 

  48. Peterson KA, Puzzarini C (2005) Theor Chem Accts 114:283

    Article  CAS  Google Scholar 

  49. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  50. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) J Chem Phys 157:479

    CAS  Google Scholar 

  51. Heßelmann A, Jansen G (1999) Chem Phys Lett 315:248

    Article  Google Scholar 

  52. Korona T, Jeziorski B (2006) J Chem Phys 125:184109

    Article  Google Scholar 

  53. Korona T (2006) J Chem Phys 128:224104

    Article  Google Scholar 

  54. Werner HJ, Manby FR, Knowles PJ (2003) J Chem Phys 118:8149

    Article  CAS  Google Scholar 

Download references

Acknowledgment

C. K. would like to thank F. Neese and H.-J. Werner for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kollmar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollmar, C., Heßelmann, A. The role of orbital transformations in coupled-pair functionals. Theor Chem Acc 127, 311–325 (2010). https://doi.org/10.1007/s00214-009-0719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0719-5

Keywords

Navigation