Theoretical Chemistry Accounts

, Volume 127, Issue 1–2, pp 69–80 | Cite as

Mechanistic pathways for the reaction of quercetin with hydroperoxy radical

  • Zoran S. Marković
  • Jasmina M. Dimitrić MarkovićEmail author
  • Ćemal B. Doličanin
Regular Article


The extensive theoretical study of the interaction of one of the most abundant and reactive flavonols, quercetin, with hydroperoxy radical (HOO·), using the M052X/6-31 + Gd, p level of theory, was performed. Results indicating that quercetin is not a planar molecule are in accord with the X-ray analysis. The applied method successfully reproduces the bond dissociation enthalpy, and reveals that the reaction of quercetin with the hydroperoxy radical is governed by a hydrogen atom transfer mechanism. It is confirmed that the 3′OH and 4′OH are the most reactive sites, and that the reaction in the 3′OH position is faster than that in the 4′OH position.


Quercetin DFT M052X Hydroperoxy radical 



The authors acknowledge financial support by the Ministry of Science and Environmental of Republic of Serbia (Grant No. 142025). Authors would like to thank all the Referees, especially to the anonymous Referee 2, for the detailed and critical reading of our manuscript.

Supplementary material

214_2009_706_MOESM1_ESM.doc (279 kb)
Supplementary material 1 (DOC 279 kb)


  1. 1.
    Cody V, Middleton E, Harborne JB (1986) Plant flavonoids in biology and medicine: biochemical, pharmacological and structure-activity relationships. Alan R. Liss, New YorkGoogle Scholar
  2. 2.
    Cody V, Middleton EJR, Harborne JB, Beretz A (1988) Plant flavonoids in biology and medicine II: biochemical, cellular and medicinal properties. Alan R. Liss, New YorkGoogle Scholar
  3. 3.
    Rice-Evans C, Miller N (1996) Antioxidant activities of flavonoids as bioactive components of food. Biochem Soc Trans 24:790–794Google Scholar
  4. 4.
    Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemisty 55:481–504CrossRefGoogle Scholar
  5. 5.
    Shen L, Ji HF, Zhang HY (2007) How to understand the dichotomy of antioxidants. Biochem Biophys Res Commun 362:543–545CrossRefGoogle Scholar
  6. 6.
    Cao G, Sofic E, Prior R (1997) Antioxidant and prooxidant behavior of flavonoids: structure- activity relationships. Free Radical Biol Med 22(5):749–760CrossRefGoogle Scholar
  7. 7.
    Bravo L, Abia R, Eastwood MA, Saura-Calixto F (1994) Degradation of polyphenols (catechin and tannic acid) in the rat intestinal tract. Effect on coloic fermentation and faecal output. Br J Nutr 71:933–946CrossRefGoogle Scholar
  8. 8.
    Pryor WA (ed) (1976) Free radicals in biology, vol I. Academic Press, New YorkGoogle Scholar
  9. 9.
    Pryor WA (1986) Oxy-radicals and related species: their formation, lifetimes, and reactions. Ann Rev Physiol 48:657–667CrossRefGoogle Scholar
  10. 10.
    Fridovich I (1978) The biology of oxygen radicals. Science 20:875–880CrossRefGoogle Scholar
  11. 11.
    Mayer JM (2004) Proton-coupled electron transfer: a reaction chemist’s view. Annu Rev Phys Chem 55:363–390CrossRefGoogle Scholar
  12. 12.
    DiLabio GA, Johnson ER (2007) Lone pair-π and π–π interactions play an important role in proton-coupled electron transfer reactions. J Am Chem Soc 129:6199–6203CrossRefGoogle Scholar
  13. 13.
    DiLabio GA, Ingold KU (2005) A theoretical study of the iminoxyl/oxime self-exchange reaction. A five-center, cyclic proton-coupled electron transfer. J Am Chem Soc 127:6693–6699CrossRefGoogle Scholar
  14. 14.
    Sjodin M, Styring S, Åkermark B, Sun L, Hammarstrom L (2000) Proton-coupled electron transfer from tyrosine in a tyrosine—ruthenium—tris-bipyridine complex: comparison with tyrosinez oxidation in photosystem II. J Am Chem Soc 122:3932–3936CrossRefGoogle Scholar
  15. 15.
    Mulder P, Korth HG, Ingold KU (2005) Why quantum–thermochemical calculations must be used with caution to indicate “a promising lead antioxidant”. Helvetica Chimica Acta 88:370–374CrossRefGoogle Scholar
  16. 16.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  17. 17.
    Zhao Y, Schultz NE, Truhlar DG (2005) Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J Chem Phys 123:161103(1–5)Google Scholar
  18. 18.
    Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2(2):364–382CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101(1–18)Google Scholar
  20. 20.
    Here WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  21. 21.
    Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem 111:11683–11700Google Scholar
  22. 22.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick AD, Rabuck KD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03, ReVision E.01-SMP. Gaussian Inc., PittsburghGoogle Scholar
  23. 23.
    Jin GZ, Yamagata Y, Tomita KI (1990) Structure of quercetin dihydrate. Acta Cryst 46(2):310–313Google Scholar
  24. 24.
    Leopoldini M, Marino T, Russo N, Toscano M (2004) Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent. Theor Chem Acc 111:210–216Google Scholar
  25. 25.
    Dhaouadi Z, Nsangou M, Garrab N, Anouar EH, Marakchi K, Lahmar S (2009) DFT study of the reaction of quercetin with O2 and OH radicals. J Mol Struct THEOCHEM. doi: 10.1016/j.theochem.2009.02.034
  26. 26.
    Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–938CrossRefGoogle Scholar
  27. 27.
    van Acker SABE, van den Berg DJ, Tromp MNJL, Griffen DH, van Bennekom WP, van Der Vijgh WJ, Bast A (1996) Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med 20:331–338CrossRefGoogle Scholar
  28. 28.
    Russo N, Toscano M, Uccella N (2000) A theoretical study of the conformational behavior and electronic structure of taxifolin correlated with the free radical-scavenging activity. J Agric Food Chem 48:3232–3240CrossRefGoogle Scholar
  29. 29.
    Vasilescu D, Girma R (2002) Quantum molecular modeling of quercetin—simulation of the interaction with the free radical t-BuOO. Int J Quantum Chem 90:888–902CrossRefGoogle Scholar
  30. 30.
    van Acker SABE, de Groot MJ, van den Berg DJ, Tromp MNJL, Donne′-Op den Kelder GM, Wim JF, van Der Vijgh WJF, Bast A (1996) A quantum chemical explanation of the antioxidant activity of flavonoids. Chem Res Toxicol 9:1305–1312CrossRefGoogle Scholar
  31. 31.
    Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem A 108:4916–4923CrossRefGoogle Scholar
  32. 32.
    Leopoldini M, Pitarch IP, Russo N, Toscano M (2004) Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. J Phys Chem A 108:92–96CrossRefGoogle Scholar
  33. 33.
    Trouillas P, Marsal P, Siri D, Lazzaroni R, Duroux JL (2006) A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site. Food Chem 97:679–688CrossRefGoogle Scholar
  34. 34.
    Lemaska K, Szymusiak H, Tyrakowska B, Zieliski R, Soffers AEMF, Rietjens IMCM (2001) The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Rad Biol Med 31:869–881CrossRefGoogle Scholar
  35. 35.
    Lucarini M, Pedulli GF, Guerra M (2004) A critical evaluation of the factors determining the effect of intramolecular hydrogen bonding on the O-H bond dissociation enthalpy of catechol and of flavonoid antioxidants. Chem Eur J 10:933–939CrossRefGoogle Scholar
  36. 36.
    Priyadarsini KI, Maity DK, Naik GH, Kumar MS, Unnikrishnan MK, Satav JG (2003) Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic Biol Med 35:475–484CrossRefGoogle Scholar
  37. 37.
    Trouillas P, Fagne`re C, Lazzaroni R, Calliste CA, Marfak A, Duroux JL (2004) A theoretical study of the conformational behavior and electronic structure of taxifolin correlated with the free radical-scavenging activity. Food Chem 88:571–582CrossRefGoogle Scholar
  38. 38.
    Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183CrossRefGoogle Scholar
  39. 39.
    Zhang HY, Sun YM, Chen DZ (2001) O–H bond dissociation energies of phenolic compounds are determined by field/inductive effect or resonance effect. A DFT study and its implication. QSAR 20:148–152Google Scholar
  40. 40.
    Zhang HY, Sun YM, Wang XL (2003) Substituent effects on O–H bond dissociation enthalpies and ionization potentials of catechols: a DFT study and its implications in the rational design of phenolic antioxidants and elucidation of structure-activity relationships for flavonoid antioxidants. Chem Eur J 9:502–508CrossRefGoogle Scholar
  41. 41.
    Zhang HY (2004) On the effectiveness of the EPR radical equilibration technique in estimating O–H bond dissociation enthalpies of catechols and other complex polyphenols. New J Chem 28:1284–1285CrossRefGoogle Scholar
  42. 42.
    Check CE, Gilbert TM (2005) Progressive systematic underestimation of reaction energies by the B3LYP model as the number of C–C bonds increases: why organic chemists should use multiple DFT models for calculations involving polycarbon hydrocarbons. J Org Chem 70:9828–9834CrossRefGoogle Scholar
  43. 43.
    Redfern PC, Zapol P, Curtiss LA, Raghavachari K (2000) Assessment of Gaussian-3 and density functional theories for enthalpies of formation of C1–C16 alkanes. J Phys Chem A 104:5850–5854CrossRefGoogle Scholar
  44. 44.
    Grimme S (2006) Seemingly simple stereoelectronic effects in alkane isomers and the implications for Kohn-Sham density functional theory. Angew Chem Int Ed 45:4460–4464CrossRefGoogle Scholar
  45. 45.
    Mulder P, Horth HG, Pratt DA, DiLabio GA, Valgimigli L, Pediulli GF, Ingold KU (2005) Critical re-evaluation of the O–H bond dissociation enthalpy in phenol. J Phys Chem A 109:2647–2655CrossRefGoogle Scholar
  46. 46.
    Menadis N, Wang LF, Tsimidou MZ, Zhang HY (2005) Radical scavenging potential of phenolic compounds encountered in O. europaea products as indicated by calculation of bond dissociation enthalpy and ionization potential values. J Agric Food Chem 53:295–303CrossRefGoogle Scholar
  47. 47.
    DiLabio GA, Pratt DA, LoFaro AD, Wright JS (1999) Theoretical study of X–H bond energetics (X = C, N, O, S): application to substituent effects, gas phase acidities, and redox potentials. J Phys Chem A 103:1653–1661CrossRefGoogle Scholar
  48. 48.
    Li MJ, Liu L, Fu Y, Guo QX (2007) Accurate bond dissociation enthalpies of popular antioxidants predicted by the ONIOM-G3B3 method. J Mol Struct THEOCHEM 815:1–9CrossRefGoogle Scholar
  49. 49.
    Musialik M, Kuzmicz R, Pawłowski TS, Litwinienko G (2009) Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J Org Chem 74:2699–2709CrossRefGoogle Scholar
  50. 50.
    Balogh-Hergovich E, Kaiser J, Speier G (1997) Synthesis and characterization of copper(I) and copper (II) flavonolate complexes with phthalazine ligand, and their oxygenation and relevance to quercetinase. Inorg Chim Acta 256:9–14CrossRefGoogle Scholar
  51. 51.
    Marfak A, Trouillas P, Allais DP, Calliste CA, Duroux JL (2004) Reactivity of flavonoids with 1-hydroxyethyl radical: a γ-radiolysis study. Biochem Biophys Acta Gen Subjects 1670:28–39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Zoran S. Marković
    • 1
  • Jasmina M. Dimitrić Marković
    • 2
    Email author
  • Ćemal B. Doličanin
    • 1
  1. 1.Department of Bio-chemical and Medical SciencesState University of Novi PazarNovi PazarRepublic of Serbia
  2. 2.Faculty of Physical ChemistryUniversity of BelgradeBelgradeRepublic of Serbia

Personalised recommendations