Advertisement

Theoretical Chemistry Accounts

, Volume 127, Issue 1–2, pp 57–67 | Cite as

Intramolecular ferromagnetic coupling in bis-oxoverdazyl and bis-thioxoverdazyl diradicals with polyacene spacers

  • Debojit Bhattacharya
  • Suranjan Shil
  • Anirban MisraEmail author
  • D. J. Klein
Regular Article

Abstract

We predict the intramolecular exchange coupling constant (J) for 10 different oxo- and thioxo-verdazyl-based hi-spin ground-state diradicals with linear polyacene couplers of varying length using the broken symmetry approach in an unrestricted DFT framework. The magnetic characteristics of these systems are explained using the spin-density distribution, and an analysis is made by “magnetic” orbitals. The nuclear independent chemical shift (NICS) values have been calculated for the diradicals. The average NICS(1) (1 Å above the ring surface) value per benzenoid ring increases as the size of the coupler increases. So-called ΔNICS(1) values [the difference among average NICS(1) per benzenoid ring in the coupler and the NICS(1) of the linear polyacene molecule] are correlated with J values. Bond orders and hyperfine coupling constants have also been evaluated and analyzed for the diradicals.

Keywords

High spin Verdazyl Ferromagnet Nuclear independent chemical shift Polyacene couplers 

Notes

Acknowledgments

Financial support from Department of Science and Technology, India is thankfully acknowledged. S. Shil is thankful to UGC, India, for a fellowship. DJK acknowledges support (through grant BD-0894) from the Welch Foundation of Houston, Texas.

Supplementary material

214_2009_705_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1.06 mb)

References

  1. 1.
    Kahn O (1993) Molecular magnetism. New York, VCHGoogle Scholar
  2. 2.
    Molecular magnetism: from molecular assemblies to devices. In: Coronado E, Delhaè P, Gatteschi D, Miller JS (eds) (1996) NATO ASI Series E321, vol 321, Kluwer, DordrechtGoogle Scholar
  3. 3.
    Benelli C, Gatteschi D (2002) Chem Rev 102:2369CrossRefGoogle Scholar
  4. 4.
    Tamura M, Nakazawa Y, Shiomi D, Nozawa K, Hosokoshi Y, Ishikawa M, Takahashi M, Kinoshita M (1991) Chem Phys Lett 186:401CrossRefGoogle Scholar
  5. 5.
    Dougherty DA (1991) Acc Chem Res 24:88CrossRefGoogle Scholar
  6. 6.
    Borden WT, Iwamura H, Berson JA (1994) Acc Chem Res 27:109CrossRefGoogle Scholar
  7. 7.
    Koivisto BD, Hicks RG (2005) Coord Chem Rev 249:2612CrossRefGoogle Scholar
  8. 8.
    Ziessel R, Stroh C, Heise H, Khler FH, Turek P, Claiser N, Souhassou M, Lecomte C (2004) J Am Chem Soc 126:12604CrossRefGoogle Scholar
  9. 9.
    Ali Md E, Datta SN (2006) J Phys Chem A 110:2776CrossRefGoogle Scholar
  10. 10.
    Ali Md E, Datta SN (2006) J Phys Chem A 110:13232CrossRefGoogle Scholar
  11. 11.
    Takeda K, Hamano T, Kawae T, Hidaka M, Takahashi M, Kawasaki S, Mukai K (1995) J Phys Soc Jpn 64:2343CrossRefGoogle Scholar
  12. 12.
    Mukai K, Konishi K, Nedachi K, Takeda K (1996) J Phys Chem 100:9658CrossRefGoogle Scholar
  13. 13.
    Kuhn R, Trischmann H (1963) Angew Chem Int Ed Engl 2:155CrossRefGoogle Scholar
  14. 14.
    Fico RM Jr, Hay MF, Reese S, Hammond S, Lambert E, Fox MA (1999) J Org Chem 64:9386CrossRefGoogle Scholar
  15. 15.
    Brook DJR, Fox HH, Lynch V, Fox MA (1996) J Phys Chem 100:2066CrossRefGoogle Scholar
  16. 16.
    Borden WT, Davidson ER (1977) J Am Chem Soc 99:4587CrossRefGoogle Scholar
  17. 17.
    Neugebauer FA, Fischer H, Krieger C (1993) J Chem Soc Perkin Trans 2:535Google Scholar
  18. 18.
    Mukai K, Konishi K, Nedachi K, Takeda K (1995) J Magn Magn Mater 140:1449CrossRefGoogle Scholar
  19. 19.
    Mukai K, Nedachi K, Takiguchi M, Kobayashi T, Amaya K (1995) Chem Phys Lett 238:61CrossRefGoogle Scholar
  20. 20.
    Kremer RK, Kanellakopulos B, Bele P, Brunner H, Neugebauer FA (1994) Chem Phys Lett 230:255CrossRefGoogle Scholar
  21. 21.
    Mito M, Nakano H, Kawae T, Hitaka M, Takagi S, Deguchi H, Suzuki K, Mukai K, Takeda K (1997) J Phys Soc Jpn 66:2147CrossRefGoogle Scholar
  22. 22.
    Mukai K, Nuwa M, Morishita T, Muramatsu T, Kobayashi TC, Amaya K (1997) Chem Phys Lett 272:501CrossRefGoogle Scholar
  23. 23.
    Jamali JB, Achiwa N, Mukai K, Suzuki K, Ajiro Y, Matsuda K, Iwamura H (1998) J Magn Magn Mater 177:789CrossRefGoogle Scholar
  24. 24.
    Mukai K, Wada N, Jamali JB, Achiwa N, Narumi Y, Kindo K, Kobayashi T, Amaya K (1996) Chem Phys Lett 257:538CrossRefGoogle Scholar
  25. 25.
    Jamali JB, Wada N, Shimobe Y, Achiwa N, Kuwajima S, Soejima Y, Mukai K (1998) Chem Phys Lett 292:661CrossRefGoogle Scholar
  26. 26.
    Hamamoto T, Narumi Y, Kindo K, Mukai K, Shimobe Y, Kobayashi TC, Muramatsu T, Amaya K (1998) Physica B 246:36CrossRefGoogle Scholar
  27. 27.
    Neugebauer FA, Fisher H, Siegel R (1988) Chem Ber 121:815CrossRefGoogle Scholar
  28. 28.
    Serwinski PR, Esat B, Lahti PM, Liao Y, Walton R, Lan J (2004) J Org Chem 69:5247CrossRefGoogle Scholar
  29. 29.
    Hicks RG, Koivisto BD, Lemaire MT (2004) Org Lett 12:1887CrossRefGoogle Scholar
  30. 30.
    Hicks RG, Hooper R (1999) Inorg Chem 38:28CrossRefGoogle Scholar
  31. 31.
    Gilroy JB, McKinnon SDJ, Kennepohl P, Zsombor MS, Ferguson MJ, Thompson LK, Hicks RG (2007) J Org Chem 72:8062CrossRefGoogle Scholar
  32. 32.
    Polo V, Alberola A, Andres J, Anthony J, Pilkington M (2008) Phys Chem Chem Phys 10:857CrossRefGoogle Scholar
  33. 33.
    Latif IA, Panda A, Datta SN (2009) J Phys Chem A 113:1595CrossRefGoogle Scholar
  34. 34.
    Bhattacharya D, Misra A (2009) J Phys Chem A 113:5470CrossRefGoogle Scholar
  35. 35.
    Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) J Am Chem Soc 126:7416CrossRefGoogle Scholar
  36. 36.
    Clar E (1964) Polycyclic hydrocarbons, vols 1, 2. Academic Press, LondonGoogle Scholar
  37. 37.
    Hegmann FA, Tykwinski RR, Lui KPH, Bullock JE, Anthony JE (2002) Phys Rev Lett 89:227403CrossRefGoogle Scholar
  38. 38.
    Houk KN, Lee PS, Nendel M (2001) J Org Chem 66:5517CrossRefGoogle Scholar
  39. 39.
    Chung G, Lee D (2001) Chem Phys Lett 350:339CrossRefGoogle Scholar
  40. 40.
    de Graaf C, Sousa C, de PR Moreira I, Illas F (2001) J Phys Chem A 105:11371CrossRefGoogle Scholar
  41. 41.
    Noodleman L (1981) J Chem Phys 74:5737CrossRefGoogle Scholar
  42. 42.
    Noodleman L, Baerends EJ (1984) J Am Chem Soc 106:2316CrossRefGoogle Scholar
  43. 43.
    Ginsberg AP (1980) J Am Chem Soc 102:111CrossRefGoogle Scholar
  44. 44.
    Noodleman L, Peng CY, Case DA, Mouesca J-M (1995) Coord Chem Rev 144:199CrossRefGoogle Scholar
  45. 45.
    Noodleman L, Davidson ER (1986) Chem Phys 109:131CrossRefGoogle Scholar
  46. 46.
    Bencini A, Totti F, Daul CA, Doclo K, Fantucci P, Barone V (1997) Inorg Chem 36:5022CrossRefGoogle Scholar
  47. 47.
    Bencini A, Gatteschi D, Totti F, Sanz DN, McClevrty JA, Ward MD (1998) J Phys Chem A 102:10545CrossRefGoogle Scholar
  48. 48.
    Ruiz E, Cano J, Alvarez S, Alemany P (1999) J Comput Chem 20:1391CrossRefGoogle Scholar
  49. 49.
    Caballol R, Castell O, Illas F, de PR Moreira I, Malrieu JP (1997) J Phys Chem A 101:7860Google Scholar
  50. 50.
    de PR Moreira I, Illas F (2006) Phys Chem Chem Phys 8:1645Google Scholar
  51. 51.
    Illas F, de PR Moreira I, Bofill JM, Filatov M (2004) Phys Rev B 70:132414Google Scholar
  52. 52.
    de PR Moreira I, Costa R, Filatov M, Illas F (2007) J Chem Theory Comput 3:764CrossRefGoogle Scholar
  53. 53.
    Illas F, de PR Moreira I, Bofill JM, Filatov M (2006) Theor Chem Acc 116:587CrossRefGoogle Scholar
  54. 54.
    Yamaguchi K, Takahara Y, Fueno T, Nasu K (1987) Jpn J Appl Phys 26:L1362CrossRefGoogle Scholar
  55. 55.
    Yamaguchi K, Tsunekawa T, Toyoda Y, Fueno T (1988) Chem Phys Lett 143:371CrossRefGoogle Scholar
  56. 56.
    Yamaguchi K, Jensen F, Dorigo A, Houk KN (1988) Chem Phys Lett 149:537CrossRefGoogle Scholar
  57. 57.
    Yamaguchi K, Takahara Y, Fueno T, Houk KN (1988) Theor Chim Acta 73:337CrossRefGoogle Scholar
  58. 58.
    Ruiz E, Alvarez S, Cano J, Polo V (2005) J Chem Phys 123:164110CrossRefGoogle Scholar
  59. 59.
    Adamo C, Barone V, Bencini A, Broer R, Filatov M, Harrison NM, Illas F, Malrieu JP, de PR Moreira I (2006) J Chem Phys 124:107101Google Scholar
  60. 60.
    Polo V, Gräfenstein J, Kraka E, Cremer D (2003) Theo Chem Acc 109:22Google Scholar
  61. 61.
    Gräfenstein J, Kraka E, Filatov M, Cremer D (2002) Int J Mol Sci 3:360CrossRefGoogle Scholar
  62. 62.
    Martin RL, Illas F (1997) Phys Rev Lett 79:1539CrossRefGoogle Scholar
  63. 63.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  64. 64.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  65. 65.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  66. 66.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257CrossRefGoogle Scholar
  67. 67.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213CrossRefGoogle Scholar
  68. 68.
    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, Defrees DJ, Pople JA (1982) J Chem Phys 77:3654CrossRefGoogle Scholar
  69. 69.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomergy JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishido M, Nakajima T, Honda Y, Kitao O, Nakai H, Li X, Klene M, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin J, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Doannernberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DG, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challocombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Gonzalez C, Pople J (2004) GAUSSIAN 03 W (Revision D.01) Gaussian Inc. Wallingford, CTGoogle Scholar
  70. 70.
    Hyperchem Professional Release 7.5 for Windows (2002) Hypercube Inc., GainesvilleGoogle Scholar
  71. 71.
    Flükiger P, Lüthi HP, Portmann S, Weber J (2000) MOLEKEL 4.0. Swiss Center for Scientific Computing, Manno, SwitzerlandGoogle Scholar
  72. 72.
    Brook DJR, Yee GT (2006) J Org Chem 71:4889CrossRefGoogle Scholar
  73. 73.
    Trindle C, Datta SN (1996) Int J Quantum Chem 57:781CrossRefGoogle Scholar
  74. 74.
    Trindle C, Datta SN, Mallik B (1997) J Am Chem Soc 119:12947CrossRefGoogle Scholar
  75. 75.
    Wiberg KB (1968) Tetrahedron 24:1083CrossRefGoogle Scholar
  76. 76.
    Lieb EH, Mattis DC (1962) J Math Phys 3:749CrossRefGoogle Scholar
  77. 77.
    Ovchinnikov AA (1978) Theor Chim Acta 47:297CrossRefGoogle Scholar
  78. 78.
    Klein DJ, Nelin C, Alexander S, Matsen FA (1982) J Chem Phys 77:3101CrossRefGoogle Scholar
  79. 79.
    Klein DJ, Alexander SA (1987) In: King RB (ed) Chemical applications of topology and graph theory. Elsevier, Amsterdam, pp 404–419Google Scholar
  80. 80.
    Hoffmann R, Zeiss GD, Van Dine GW (1968) J Am Chem Soc 90:1485CrossRefGoogle Scholar
  81. 81.
    Borden WT, Davidson ER (1981) Acc Chem Res 14:69CrossRefGoogle Scholar
  82. 82.
    Constantinides CP, Koutentis PA, Schatz J (2004) J Am Chem Soc 126:16232CrossRefGoogle Scholar
  83. 83.
    Hay PJ, Thibeault CJ, Hoffmann R (1975) J Am Chem Soc 97:4884CrossRefGoogle Scholar
  84. 84.
    Malloci G, Mulas G, Cappellini G, Joblin C (2007) Chem Phys 340:43CrossRefGoogle Scholar
  85. 85.
    Reddy AR, Fridman-Marueli G, Benidikov M (2007) J Org Chem 72:51CrossRefGoogle Scholar
  86. 86.
    Clar E (1970) The aromatic sextet. Wiley, New YorkGoogle Scholar
  87. 87.
    Misra A, Klein DJ, Morikawa T (2009) J Phys Chem A 113:1151CrossRefGoogle Scholar
  88. 88.
    Misra A, Schmalz TG, Klein DJ (2009) J Chem Inf Model. doi: 10.1021/ci900321e
  89. 89.
    Katrizky A, Barczymski P, Musumarra G, Pisano D, Szafran M (1989) J Am Chem Soc 111:7CrossRefGoogle Scholar
  90. 90.
    Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJRvE (1996) J Am Chem Soc 118:6317CrossRefGoogle Scholar
  91. 91.
    Schleyer PvR, Manoharan M, Jiao H, Stahl F (2001) Org Lett 3:3643CrossRefGoogle Scholar
  92. 92.
    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105:3842CrossRefGoogle Scholar
  93. 93.
    Klein DJ (1992) J Chem Edu 69:691CrossRefGoogle Scholar
  94. 94.
    Klein DJ, Babic D (1997) J Chem Inf Comp Sci 37:656Google Scholar
  95. 95.
    Poater J, García-Cruz I, Illas F, Solà M (2004) Phys Chem Chem Phys 6:314CrossRefGoogle Scholar
  96. 96.
    Feixas F, Matito E, Poater J, Solà M (2008) J Comput Chem 29:1543CrossRefGoogle Scholar
  97. 97.
    Plater MJ, Kemp S, Coronado E, Gómez-García CJ, Harrington RW, Clegg W (2006) Polyhedron 25:2433CrossRefGoogle Scholar
  98. 98.
    Neugebauer FA, Fischer H (1980) Angew Chem Int Ed Engl 19:724CrossRefGoogle Scholar
  99. 99.
    Valero R, Costa R, de PR Moreira I, Truhlar DG, Illas F (2008) J Chem Phys 128:114103CrossRefGoogle Scholar
  100. 100.
    Rivero P, de PR Moreira I, Illas F, Scuseria GE (2008) J Chem Phys 129:184110CrossRefGoogle Scholar
  101. 101.
    Ali Md E, Datta SN (2006) J Mol Struct (THEOCHEM) 775:19CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Debojit Bhattacharya
    • 1
  • Suranjan Shil
    • 1
  • Anirban Misra
    • 1
    Email author
  • D. J. Klein
    • 2
  1. 1.Department of ChemistryUniversity of North BengalDarjeelingIndia
  2. 2.MARS, Texas A&M University at GalvestonGalvestonUSA

Personalised recommendations