Skip to main content
Log in

On the structure, infrared and Raman spectra of the 2:1 cysteine–Zn complex

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A recent study on the Raman spectrum of the cysteine zwitterion and anion, and the 2:1 (Cys)2Zn complex was reanalyzed employing B3LYP/6-311++G(3df,2pd) calculations in a simulated water environment. The spectra were rediscussed in light of the apparent incorrect structure determined in the original paper for this complex. The complex turns out to be tetrahedral and tetracoordinated instead of octahedral hexacoordinated, as initially proposed. The calculated Raman spectrum of the complex agrees very well with the experimental data, showing that both the geometrical and electronic structures are well represented. Three metal–ligand bands are found, two of them involving mostly the symmetrical and asymmetrical stretching of the Zn–N and Zn–S bonds. They were measured at 334 and 296 cm−1 and calculated at 319 and 249 cm−1, respectively. The third band involves the stretching of Zn–S bonds but also skeletal vibrations of the ligand. This band, measured at 399 cm−1 and calculated at 444 cm−1, has been previously assigned incorrectly to a Zn–O bond which does not actually exists since the CO −12 fragments are located away from the Zn ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Klug A, Schwabe W (1995) FASEB J 9:597

    CAS  Google Scholar 

  2. Wolfe SA, Grant RA, Elrod-Erickson M, Pabo CO (2001) Structure (Camb) 9:717

    Article  CAS  Google Scholar 

  3. Laity JH, Lee BM, Wright PE (2001) Curr Opin Struct Biol 11:39

    Article  CAS  Google Scholar 

  4. Leon O, Roth M (2000) Biol Res 33:21

    Article  CAS  Google Scholar 

  5. Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP (2007) Trends Biochem Sci 32:63

    Article  CAS  Google Scholar 

  6. Iuchi S (2001) Cell Mol Life Sci 58:625

    Article  CAS  Google Scholar 

  7. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Müller-Lerch F, Fu F, Pearlberg J, Göbel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen TI, Voytas DF, Keith Joung J (2008) Mol Cell 31:294

    Article  CAS  Google Scholar 

  8. Shindo H, Brown TL (1965) J Am Chem Soc 87:1904

    Article  CAS  Google Scholar 

  9. Gockel P, Vahrenkamp H, Zuberbühler AD (1993) Helv Chim Acta 76:511

    Article  CAS  Google Scholar 

  10. Gockel P, Vogler R, Vahrenkamp H (1996) Chem Ber 129:887

    Article  CAS  Google Scholar 

  11. Foley S, Enescu M (2007) Vib Spectrosc 44:256

    Article  CAS  Google Scholar 

  12. Becke AD (1993) Chem Phys 98:5648

    CAS  Google Scholar 

  13. Lee C, Yang W, Parr RG (1988) Phys Rev 98:785

    Google Scholar 

  14. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  15. Deng Z, Polavarapu PL, Ford SJ, Hecht L, Barron LD, Ewig CS, Jalkanen K (1996) J Phys Chem 100:2025

    Article  CAS  Google Scholar 

  16. Jalkanen KJ, Suhai S (1996) Chem Phys 208:81

    Article  CAS  Google Scholar 

  17. Han W-G, Jalkanen KJ, Elstner M, Suhai S (1998) J Phys Chem B 102:2587

    Article  CAS  Google Scholar 

  18. Poon C-D, Samulski ET, Weise CF, Weisshaar JC (2000) J Am Chem Soc 122:5642

    Article  CAS  Google Scholar 

  19. Weise CF, Weisshaar JC (2003) J Phys Chem A 107:3265

    CAS  Google Scholar 

  20. Deplazes E, van Bronswijk, Zhu WF, Barron LD, Ma H, Nafie LA, Jalkanen KJ (2008) Theor Chem Acc 119:155

    Article  CAS  Google Scholar 

  21. Mukhopadhyay P, Zuber G, Beratan DN (2008) Biophys J 95:5574

    Article  CAS  Google Scholar 

  22. Losada M, Xu Y (2007) Phys Chem Chem Phys 9:3127

    Article  CAS  Google Scholar 

  23. Jalkanen KJ, Degtyarenko IM, Nieminen RM, Cao X, Nafie LA, Zhu F, Barron LD (2008) Theor Chem Acc 119:191

    Article  CAS  Google Scholar 

  24. Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43

    Article  CAS  Google Scholar 

  25. Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford, CT

  26. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comp Chem 29:839

    Article  Google Scholar 

  27. Goerbitz CH, Dalhus B (1996) Acta Crystallogr C 52:1756

    Article  Google Scholar 

  28. Kerr KA, Ashmore JP, Koetzle TF (1975) Acta Crystallogr B 31:2022

    Article  Google Scholar 

  29. Pawlukojć A, Leciejewicz J, Ramirez-Cuesta AJ, Nowicka-Scheibe J (2005) Spectrochim Acta A 61:2474

    Article  Google Scholar 

  30. Halls M, Schlegel B (1999) J Chem Phys 111:8819

    Article  CAS  Google Scholar 

  31. Bende S, Suhai S (2005) Int J Quantum Chem 103:841

    Article  CAS  Google Scholar 

  32. Jalkanen KJ, Nieminen RM, Frimand K, Bohr J, Bohr H, Wade RC, Tajkhorshid E, Suhai S (2001) Chem Phys 265:125

    Article  CAS  Google Scholar 

  33. Ikram M, Powell DB (1973) Pak J Sci Res 25:53

    CAS  Google Scholar 

Download references

Acknowledgments

This work was performed under the auspices of Pedeciba Química (PNUD Proy. URU/06/004) and PDT 63/350. We gratefully acknowledge Professor and friend Sándor Suhai for his generous hospitality and discussions about our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar N. Ventura.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kieninger, M., Ventura, O.N. On the structure, infrared and Raman spectra of the 2:1 cysteine–Zn complex. Theor Chem Acc 125, 279–291 (2010). https://doi.org/10.1007/s00214-009-0697-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0697-7

Keywords

Navigation