Skip to main content

Advertisement

Log in

Computational classification of microRNAs in next-generation sequencing data

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) have been shown to play an important regulatory role in plants and animals. A large number of known and novel miRNAs can be uncovered from next-generation sequencing (NGS) experiments that measure the complement of a given cell’s small RNAs under various conditions. Here, we present an algorithm based on radial basis functions for the identification of potential miRNA precursor structures. Computationally assessing features of known human miRNA precursors, such as structural linearity, normalized minimum folding energy, and nucleotide pairing frequencies, this model robustly differentiates between miRNAs and other types of non-coding RNAs. Without relying on cross species conservation, the method also identifies non-conserved precursors and achieves high sensitivity. The presented method can be used routinely for the identification of known and novel miRNAs present in NGS experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kawaji H, Nakamura M, Takahashi Y, Sandelin A, Katayama S, Fukuda S, Daub CO, Kai C, Kawai J, Yasuda J, Carninci P, Hayashizaki Y (2008) Hidden layers of human small RNAs. BMC Genomics 9:57–58

    Article  Google Scholar 

  2. Kawaji H, Hayashizaki Y (2008) Exploration of small RNAs. PLOS Genet 4:e22

    Article  Google Scholar 

  3. Enright AJ, Jogn B, Gaul U, Tuschl T, Sander S, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    Article  Google Scholar 

  4. Wang Y, Stricker HM, Gou D, Liu L (2007) MicroRNA: past and present. Front Biosci 12:2316–2329

    Article  CAS  Google Scholar 

  5. Maziere P, Enright A (2007) Prediction of microRNA targets. Drug Discov Today 12(11–12):452–458

    Article  CAS  Google Scholar 

  6. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85

    Article  Google Scholar 

  7. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep-sequencing data using miRDeep. Nat Biotechnol 26:407–415

    Article  Google Scholar 

  8. Stark A, Kheradpour P, Parts L, Brennecke J, Hodges E, Hannon GJ, Kellis M (2007) Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome Res 17:1865–1879

    Article  CAS  Google Scholar 

  9. Holt RA, Jones SJ (2008) The new paradigm of flow cell sequencing. Genome Res 18:839–846

    Article  CAS  Google Scholar 

  10. Sheng Y, Engström PG, Lenhard B (2007) Mammalian microRNA prediction through a support vector machine model of sequence and structure. PLoS One 2:e946

    Article  Google Scholar 

  11. Szafranski K, Megraw M, Reczko M, Hatzigeorgiou GH (2006) Support vector machine for predicting microRNA hairpins. In: Proceedings of the 2006 international conference on bioinformatics and computational biology, pp 270–276

  12. Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z (2007) MiPred:classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 35(Web Server issue): W339–W344

    Google Scholar 

  13. Burnside J, Ouyang M, Anderson A, Bernberg E, Lu C, Meyers B, Green P, Markis M, Isaacs G, Huang E, Morgan R (2008) Deep sequencing of chicken microRNAs. BMC Genomics 9:185

    Article  Google Scholar 

  14. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431

    Article  CAS  Google Scholar 

  15. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  CAS  Google Scholar 

  16. Hubbard JP, Aken BL, Beal1 K, Ballester1 B, Caccamo M, Chen Y, Clarke L, Coates G, Cunningham F, Cutts T, Down T, Dyer SC, Fitzgerald S, Fernandez-Banet J, Graf S, Haider S, Hammond M, Herrero J, Holland R, Howe K, Howe K, Johnson N, Kahari A, Keefe D, Kokocinski F, Kulesha E, Lawson D, Longden I, Melsopp C, Megy K, Meidl P, Overduin B, Parker A, Prlic A, Rice S, Rios D, Schuster M, Sealy I, Severin J, Slater G, Smedley D, Spudich G, Trevanion S, Vilella A, Vogel J, White S, Wood M, Cox T, Curwen V, Durbin R, Fernandez-Suarez XM, Flicek P, Kasprzyk A, Proctor G, Searle S, Smith J, Ureta-Vidal A, Birney E (2007) Ensembl 2007. Nucleic Acids Res 33 (Database issue):D447–D453

  17. Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA (2008) Database indexing for production MegaBLAST searches. Bioinformatics 15:1757–1764

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge all anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Reczko.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 1,053 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riback, J., Hatzigeorgiou, A.G. & Reczko, M. Computational classification of microRNAs in next-generation sequencing data. Theor Chem Acc 125, 637–642 (2010). https://doi.org/10.1007/s00214-009-0684-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0684-z

Keywords

Navigation