Skip to main content
Log in

Theoretical investigation of the electronic spectrum of pyrazine

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The description of Rydberg states by the complete active space self-consistent field (CASSCF) electronic structure method is known to be a difficult topic. In particular, two problems are frequently encountered: (a) the simultaneous presence of valence and Rydberg excited states in the same energy region can potentially lead to artificial valence–Rydberg mixing in the electronic wave functions. (b) Rydberg states have a tendency to be difficult to converge. We have implemented an approach for the consistent description of both valence and Rydberg excited states within the CASSCF electronic structure model. By employing the multiconfigurational second- and third-order perturbation theory (CASPT2/3) methods based on CASSCF reference wave functions, the procedure is verified by comparison with spectroscopic results for the example molecule pyrazine. Vertical excitation energies and other properties have been calculated for various electronic states. Basis sets and active spaces were selected to provide accurate results. Two combinations of aug-cc-pVTZ level basis sets complemented by Rydberg functions have been employed to calculate estimates for the properties of 19 singlet excited states of pyrazine. While many of the assignments made in previous studies could be confirmed, there are also several new aspects emerging from the present investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Innes KK, Ross IG, Moomaw WR (1988) J Mol Spectr 132:492

    Article  CAS  Google Scholar 

  2. Yamazaki I, Murao T, Yamanaka T, Yoshihara K (1983) Faraday Discuss Chem Soc 75:395

    Article  Google Scholar 

  3. Kommandeur J, Majewski WA, Meerts WL, Pratt DW (1987) Ann Rev Phys Chem 38:433

    Article  CAS  Google Scholar 

  4. Bolovinos A, Tsekeris P, Philips J, Pantos E, Anditsopouluos G (1984) J Mol Spectr 103:240

    Article  CAS  Google Scholar 

  5. Palmer MH, Walker IC (1991) Chem Phys 157:187

    Article  CAS  Google Scholar 

  6. Fülscher MP, Andersson K, Roos BO (1992) J Phys Chem 96:9204

    Article  Google Scholar 

  7. Fülscher MP, Roos BO (1994) Theor Chim Acta 87:403

    Article  Google Scholar 

  8. DelBene JE, Watts JD, Bartlett RJJ (1997) J Chem Phys 106:6051

    Article  CAS  Google Scholar 

  9. Weber P, Reimers JR (1999) J Phys Chem A 9821:103

    Google Scholar 

  10. Li Y, Wan J, Xu X (2007) J Comp Chem 28:1658

    Article  CAS  Google Scholar 

  11. Worth GA, Meyer H-D, Cederbaum LS (1996) J Chem Phys 105:4412

    Article  CAS  Google Scholar 

  12. Raab A, Worth GA, Meyer H-D, Cederbaum LS (1999) J Chem Phys 110:936

    Article  CAS  Google Scholar 

  13. Puzari P, Swathi RS, Sarkar B, Adhikari SJ (2005) J Chem Phys 123:134317

    Article  Google Scholar 

  14. Puzari P, Sarkar B, Adhikari SJ (2005) J Chem Phys 125:194316

    Article  Google Scholar 

  15. Domcke W, Yarkony DR, Köppel H (2004) Conical intersections: electronic structure, dynamics and spectroscopy. World Scientific, Singapore

    Google Scholar 

  16. Stock G, Woywod C, Domcke W, Swinney T, Hudson BS (1995) J Chem Phys 103:6851

    Article  CAS  Google Scholar 

  17. Sobolewski AL, Domcke W (1991) Chem Phys Lett 180:381

    Article  CAS  Google Scholar 

  18. RongXing H, ChaoYuan Z, Chih-Hao C, Sheng-Hsien L (2008) Sci China Ser B Chem 51:1166

    Article  Google Scholar 

  19. Schreiber M, Silva-Junior MR, Sauer SPA, Thiel W (2008) J Chem Phys 128:134110

    Article  Google Scholar 

  20. Werner H-J et al (2006) Molpro, version 2006.1, a package of ab initio programs

  21. Müller T, Dallos M, Lischka H (1999) J Chem Phys 110:7176

    Article  Google Scholar 

  22. Dallos M, Lischka H (2004) Theor Chem Acc 112:16

    CAS  Google Scholar 

  23. Woywod C, Livingood WC, Frederick JH (2000) J Chem Phys 112:613

    Article  CAS  Google Scholar 

  24. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  25. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  26. Andersson K (1995) Theor Chim Acta 91:31

    CAS  Google Scholar 

  27. Woywod C, Domcke W, Sobolewski AL, Werner H-J (1994) J Chem Phys 100:1400

    Article  CAS  Google Scholar 

  28. Oku M (2008) J Phys Chem A 112:2293

    Article  CAS  Google Scholar 

  29. Hinchliffe A (2003) Molecular modelling for beginners. Wiley, West Sussex

    Google Scholar 

  30. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Article  Google Scholar 

  31. Scheps R, Florida D, Rice SA (1972) J Mol Spectr 44:1

    Article  CAS  Google Scholar 

  32. Song JK, Tsubouchi M, Suzuki T (2001) J Chem Phys 115:8810

    Article  CAS  Google Scholar 

  33. Angeli C, Cimiraglia R (2002) Theor Chem Acc 107:31

    Google Scholar 

  34. Angeli C, Bories B, Cavallini A, Cimiraglia R (2006) J Chem Phys 124:054108

    Article  Google Scholar 

  35. Halkier A, Larsen H, Olsen J, Jørgensen P (1999) J Chem Phys 110:7127

    Article  Google Scholar 

Download references

Acknowledgments

Á.V. acknowledges the OTKA Grant No. T67923 and the computational resources provided by the John-von-Neumann Institute, Research Centre Jülich (Project ID ehu01). Thanks go also to Wolfgang Domcke (TU München) and to the Leibniz Supercomputing Centre in München for providing computational resources on the Linux Cluster. We also thank Kenneth Ruud (U Tromsø) for stimulating discussions. G.J.H. and Á.V. acknowledge the DFG Grant (Project ID SU244/7-1) for partly supporting this study. C.W. would like to thank the Centre for Theoretical and Computational Chemistry (CTCC) at the University of Tromsø and the Research Council of Norway (Grant Nr. 177558/V30) for continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Woywod.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woywod, C., Papp, A., Halász, G.J. et al. Theoretical investigation of the electronic spectrum of pyrazine. Theor Chem Acc 125, 521–533 (2010). https://doi.org/10.1007/s00214-009-0678-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0678-x

Keywords

Navigation