Skip to main content
Log in

Theoretical investigation on mechanism for OH-initiated oxidation of CH2=C(CH3)CH2OH

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The mechanism of the gas-phase reaction OH with CH2=C(CH3)CH2OH (2-methyl-2-propen-1-ol) has been elucidated using high-level ab initio method, i.e., CCSD(T)/6-311++g(d,p)//MP2(full)/6-311++g(d,p). Various possible H-abstraction and addition–elimination pathways are identified. The calculations indicate that the addition–elimination mechanism dominates the OH+MPO221 reaction. The addition reactions between OH radicals and CH2=C(CH3)CH2OH begin with the barrierless formation of a pre-reactive complex in the entrance channel, and subsequently the CH2(OH)C(CH3)CH2OH (IM1) and the CH2C(OH)(CH3)CH2OH (IM2) are formed by OH radicals’ electrophilic additions to the double bond. IM1 can easily rearrange to IM2 via a 1,2-OH migration. Subsequently, rearrangement of IM2 to form (CH3)2C(OH)CH2O (IM11) followed by dissociation to HCHO + (CH3)2COH (P21) is the most favorable pathway. The decomposition of IM2 to CH2OH + CH2=C(OH)CH3 (P16) is the secondary pathway. The other pathways are not expected to play any important role in forming final products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. König G, Brunda M, Puxbaum H, Hewitt CN, Duckham SC, Rudolph J (1995) Atmos Environ 29:861

    Article  Google Scholar 

  2. Cometto PM, Dalmasso PR, Taccone RA, Lane SI, Oussar F, Daële V, Mellouki A, Bras GL (2008) J Phys Chem A 112:4444

    Article  CAS  Google Scholar 

  3. Guenther AB, Hewitt CN, Erickson D, Fall R, Geron C, Graedel R, Harley P, Klinger L, Lerdau M, Mckay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) J Geophys Res 100:8873

    Article  CAS  Google Scholar 

  4. Imamura T, Iida Y, Obi K, Nagatani I, Nakagawa K, Patroescu-Klotz I, Hatakeyama S (2004) Int J Chem Kinet 36:379

    Article  CAS  Google Scholar 

  5. Papagni C, Arey J, Atkinson R (2001) Int J Chem Kinet 33:142

    Article  CAS  Google Scholar 

  6. Grosjean D, Grosjean E, Williams EL II (1993) Environ Sci Technol 27:2478

    Article  CAS  Google Scholar 

  7. Orlando JJ, Tyndall GS, Ceazan N (2001) J Phys Chem A 105:3564

    Article  CAS  Google Scholar 

  8. Rudich Y, Talukdar R, Burkholder JB, Ravishankara AR (1995) J Phys Chem 99:12188

    Article  CAS  Google Scholar 

  9. Hallquist M, Langer S, Ljungström E, Wängberg I (1996) Int J Chem Kinet 28:467

    Article  CAS  Google Scholar 

  10. Noda J, Nyman G, Langer S (2002) J Phys Chem A106:945

    Google Scholar 

  11. Rodriguez D, Rodriguez A, Soto A, Aranda A, Diaz-de-Mera Y, Notario A (2008) J Atmos Chem 59:187

    Article  CAS  Google Scholar 

  12. Rodriguez A, Rodriguez D, Soto A, Notario A, Aranda A, Diaz-de-Mera Y, Bravo I (2007) Atmos Environ 41:4693

    Article  CAS  Google Scholar 

  13. Grosjean D, Grosjean E, Williams EL II (1993) Int J Chem Kinet 25:783

    Article  CAS  Google Scholar 

  14. Grosjean E, Grosjean D (1994) Int J Chem Kinet 26:1185

    Article  CAS  Google Scholar 

  15. Frisch MJ et al (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford

  16. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  17. Fletcher GD, Rendell AP, Sherwood P (1997) Mol Phys 91:431

    Article  CAS  Google Scholar 

  18. Hehre WJ, Radom L, Pople JA, Schleyer PR (1987) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  19. EMSL Basis Set Library. http://www.emsl.pnl.gov/forms/basisform.html

  20. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  21. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  22. Garrett BC, Redmon MJ, Steckler R, Truhlar DG, Baldridge KK, Bartol D, Schmidt MW, Gordon MS (1988) J Phys Chem 92:1476

    Article  CAS  Google Scholar 

  23. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Article  CAS  Google Scholar 

  24. Werner HJ, Knowles PJ (1985) J Chem Phys 82:5053

    Article  CAS  Google Scholar 

  25. Knowles PJ, Werner HJ (1985) Chem Phys Lett 115:259

    Article  CAS  Google Scholar 

  26. Jalbout AF, Boutalib A (2006) J Phys Chem A 110:12524

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of Xuzhou Normal University (07XLA05). The authors express their gratitude to the referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weichao Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Du, B. & Feng, C. Theoretical investigation on mechanism for OH-initiated oxidation of CH2=C(CH3)CH2OH. Theor Chem Acc 125, 45–55 (2010). https://doi.org/10.1007/s00214-009-0657-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0657-2

Keywords

Navigation