Skip to main content
Log in

Isoform specific gene auto-regulation via miRNAs: a case study on miR-128b and ARPP-21

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this study, we investigate whether miRNAs located within “host” protein-coding genes may regulate the expression of their host genes. We find that 43 of 174 miRNAs encoded within RefSeq genes are predicted to target their host genes. Statistical analysis of this phenomenon suggests that gene auto-regulation via miRNAs may be under positive selective pressure. Our analysis also indicates that several of the 43 miRNAs have a much lower expectation of targeting their host genes by chance than others. Among these examples, we identify miR-128b:ARPP-21 (cyclic AMP-regulated phosphoprotein, 21 kD) as a case in which both the miRNA and the target site are also evolutionarily conserved. We provide experimental support for this miRNA:target interaction via reporter silencing assays, and present evidence that this isoform-specific gene auto-regulation has been preserved in vertebrate species in order to prevent detrimental consequences of ARPP-21 over-expression in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  CAS  Google Scholar 

  2. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  Google Scholar 

  3. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  CAS  Google Scholar 

  4. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    Article  CAS  Google Scholar 

  5. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16:720–728

    Article  CAS  Google Scholar 

  6. Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450

    Article  CAS  Google Scholar 

  7. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  Google Scholar 

  8. Paukku K, Silvennoinen O (2004) STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev 15:435–455

    Article  CAS  Google Scholar 

  9. Haberland M, Arnold MA, McAnally J, Phan D, Kim Y, Olson EN (2007) Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation. Mol Cell Biol 27:518–525

    Article  CAS  Google Scholar 

  10. Schefe JH, Menk M, Reinemund J, Effertz K, Hobbs RM, Pandolfi PP, Ruiz P, Unger T, Funke-Kaiser H (2006) A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res 99:1355–1366

    Article  CAS  Google Scholar 

  11. Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26:753–767

    Article  CAS  Google Scholar 

  12. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247

    Article  CAS  Google Scholar 

  13. Du G, Yonekubo J, Zeng Y, Osisami M, Frohman MA (2006) Design of expression vectors for RNA interference based on miRNAs and RNA splicing. FEBS J 273:5421–5427

    Article  CAS  Google Scholar 

  14. Lin SL, Miller JD, Ying SY (2006) Intronic MicroRNA (miRNA). J Biomed Biotechnol 2006:26818

    Google Scholar 

  15. Lin SL, Ying SY (2006) Gene silencing in vitro and in vivo using intronic microRNAs. Methods Mol Biol 342:295–312

    CAS  Google Scholar 

  16. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  Google Scholar 

  17. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178

    Article  CAS  Google Scholar 

  18. Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I, Einav U, Gilad S, Hurban P, Karov Y, Lobenhofer EK, Sharon E, Shiboleth YM, Shtutman M, Bentwich Z, Einat P (2004) MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14:2486–2494

    Article  CAS  Google Scholar 

  19. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101:9740–9744

    Article  CAS  Google Scholar 

  20. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067

    Article  CAS  Google Scholar 

  21. Brene S, Lindefors N, Ehrlich M, Taubes T, Horiuchi A, Kopp J, Hall H, Sedvall G, Greengard P, Persson H (1994) Expression of mRNAs encoding ARPP-16/19, ARPP-21, and DARPP-32 in human brain tissue. J Neurosci 14:985–998

    CAS  Google Scholar 

  22. Ivkovic S, Ehrlich ME (1999) Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J Neurosci 19:5409–5419

    CAS  Google Scholar 

  23. Caporaso GL, Bibb JA, Snyder GL, Valle C, Rakhilin S, Fienberg AA, Hemmings HC, Nairn AC, Greengard P (2000) Drugs of abuse modulate the phosphorylation of ARPP-21, a cyclic AMP-regulated phosphoprotein enriched in the basal ganglia. Neuropharmacology 39:1637–1644

    Article  CAS  Google Scholar 

  24. Hipfel R, Hanes J, Von Der Kammer H, Pohlner J (2006) Camp-regulated phosphoprotein for diagnostic and therapeutic use in neurodegenerative diseases. Patent No. 20060024305

  25. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  26. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    Article  Google Scholar 

  27. Shingara J, Keiger K, Shelton J, Laosinchai-Wolf W, Powers P, Conrad R, Brown D, Labourier E (2005) An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA 11:1461–1470

    Article  CAS  Google Scholar 

  28. Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG (2007) miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 35:D149–D155

    Article  CAS  Google Scholar 

  29. Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137–1140

    Article  CAS  Google Scholar 

  30. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  Google Scholar 

  31. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.G.H., M.M., and P.S. were supported by an NSF Career Award (DBI-0238295). P.S. was also supported by a predoctoral NIH training grant (5T32GM008216). S.T.J. was supported by a University of Pennsylvania Research Foundation Grant. Q.H. and K.G. were supported by the Commonwealth Universal Research Enhancement Program, Pennsylvania Department of Health, and Wistar startup fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qihong Huang or Artemis G. Hatzigeorgiou.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 40 kb)

(PDF 17 kb)

(PDF 83 kb)

(PDF 22 kb)

(PDF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Megraw, M., Sethupathy, P., Gumireddy, K. et al. Isoform specific gene auto-regulation via miRNAs: a case study on miR-128b and ARPP-21. Theor Chem Acc 125, 593–598 (2010). https://doi.org/10.1007/s00214-009-0647-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0647-4

Keywords

Navigation