Skip to main content
Log in

Theoretical study on the structures, isomerization and stability of SiC4 isomers

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The structures, energetics, dipole moments, vibrational spectra, rotational constants, and isomerization of singlet SiC4 isomers were explored using ab initio methods. Five types of isomers, a total of 11 minima, connected by 11 interconversion transition states, were located on the potential energy surface at the MP2/6-311G(d, p) level. More accurate energies were obtained at the G3(MP2) level. With the highest isomerization barrier, a C2v tetra-angular cone possesses the largest kinetic stability. The lowest-lying structure, linear SiCCCC is also highly kinetically stabilized. Besides, D2d bicyclic c-Si(CC)2, C2v five-membered ring c-SiCCCC, another C2v tetra-angular cone isomer and C3v trigonal bipyramid isomer are also considered to be kinetically stable, because their isomerization barriers are all over 10 kcal/mol. Other isomers cannot be kinetically stabilized with considerably low isomerization barriers. Investigation on the vibrational spectra, dipole moments, and rotational constants for SiC4 isomers are valuable for their detections in the interstellar space and laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bernath PF, Rogers SA, O’Brien LC, Brazier CR, McLean AD (1988) Phys Rev Lett 60:197–199

    Article  CAS  Google Scholar 

  2. Michalopoulos DL, Geusic ME, Langridge-Smith PRR, Smalley RE (1984) J Chem Phys 80:3556–3560

    Article  CAS  Google Scholar 

  3. Kafafi ZH, Hauge RH, Fredin L, Margrave J (1983) J Phys Chem 87:797–800

    Article  CAS  Google Scholar 

  4. Presila-Marquez JD, Gay SC, Rittby CML, Graham WRM (1995) J Chem Phys 102:6354–6361

    Article  Google Scholar 

  5. Presilla-Marquez JD, Graham RM (1992) J Chem Phys 96:6509–6514

    Article  CAS  Google Scholar 

  6. Presila-Marquez JD, Graham RM (1994) J Chem Phys 100:181–185

    Article  Google Scholar 

  7. Withey PA, Graham RM (1992) J Chem Phys 96:4068–4072

    Article  CAS  Google Scholar 

  8. Presilla-Marquez JD, Rittby CML, Graham RM (1996) J Chem Phys 104:2818–2824

    Article  CAS  Google Scholar 

  9. Apponi AJ, McCarthy MC, Gottlieb CA, Thaddeus P (1995) Astrophys J 516:L103–L106

    Article  Google Scholar 

  10. McCarthy MC, Apponi AJ, Gottlieb CA, Thaddeus P (2000) Astrophys J 538:766–772

    Article  CAS  Google Scholar 

  11. Van Orden A, Provencal RA, Giesen TF, Saykally RJ (1995) Chem Phys Lett 237:77–80

    Article  Google Scholar 

  12. Moazzen-Ahmadi N, Zerbetto F (1989) Chem Phys Lett 164:517–519

    Article  CAS  Google Scholar 

  13. Gordon VD, Nathan ES, Apponi AJ, McCarthy MC, Thaddeus P, Botschwina P (2000) J Chem Phys 113:5311–5320

    Article  CAS  Google Scholar 

  14. Ohishi M, Kaifu N, Kawaguchi K, Murakami A, Saito S, Yamamoto S, Ishikawa S, Fujita Y, Shiratori Y, Irvine WM (1989) Astrophys J 345:L83–L86

    Article  CAS  Google Scholar 

  15. MacKay DDS, Charnley SB (1999) Mon Not R Astron Soc 302:793–800

    Article  CAS  Google Scholar 

  16. Herbst E, Millar TJ, Wlodek S, Bohme DK (1989) Astron Astrophys 222:205–210

    Google Scholar 

  17. McCarthy MC, Gottlieb CA, Thaddeus P (2003) Mol Phys 101:697–704

    Article  CAS  Google Scholar 

  18. Guelin M, Muller S, Cernicharo J, Apponi AJ, McCarhty MC, Gottlieb CA, Thaddeus P (2000) Astron Astrophys 363:L9–L12

    CAS  Google Scholar 

  19. Kaiser RI (2002) Chem Rev 102:1309–1358

    Article  CAS  Google Scholar 

  20. Apponi AJ, McCarthy MC, Gottlieb CA, Thaddeus P (1999) J Chem Phys 111:3911–3918

    Article  CAS  Google Scholar 

  21. Apponi AJ, McCarthy MC, Gottlieb CA, Thaddeus P (2000) Astrophys J 536:L55–L58

    Article  CAS  Google Scholar 

  22. Winnewisser G (1997) J Mol Struct 408:1–10

    Article  Google Scholar 

  23. McCarthy MC, Apponi AJ, Thaddeus P (1999) J Chem Phys 110:10645–10648

    Article  CAS  Google Scholar 

  24. Bell MB, Feldman PA, Watson JKG, McCarthy MC, Travers MJ, Gottlieb CA, Thaddeus P (1999) Astrophys J 518:740–747

    Article  CAS  Google Scholar 

  25. McCarthy MC, Apponi AJ, Gottlieb CA (2001) J Chem Phys 115:870–877

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB et al (2003) Gaussian, Inc., Pittsburgh, PA

  27. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281

    Article  CAS  Google Scholar 

  28. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  29. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  30. Fukui K, Kato S, Fujimot H (1975) J Am Chem Soc 97:1–7

    Article  CAS  Google Scholar 

  31. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  32. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  33. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  34. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  35. Reed AE, Weinhold F (1983) J Chem Phys 83:1736–1740

    Article  Google Scholar 

  36. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) Theoretical chemistry institute, University of Wisconsin, Madison, WI. http://www.chem.wisc.edu/~nbo5

  37. Jiang ZY, Xu XH, Wu HS, Zhang FQ, Jin ZH (2002) J Mol Struct (Theochem) 589–590:103–109

    Article  Google Scholar 

  38. Sun H, Tan NN, He HQ, Pan XM, Su ZM, Wang RS (2008) Theor Chem Acc 119:501–509

    Article  CAS  Google Scholar 

  39. Herzberg G (1966) Electronic spectra and electronic structure of polyatomic molecules. Van Nostrand, New York, p 602

    Google Scholar 

  40. Kuchitsu K (1998) Structure of free polyatomic molecules—basic data. Springer, Berlin, p 214

    Google Scholar 

  41. Blanksby SJ, Schroder D, Dua S, Bowie JH, Schwarz H (2000) J Am Chem Soc 122:7105–7113

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 20773021 and No. 20773048) and by the China Postdoctoral Science Foundation (No. 20090451127). We are greatly thankful for the referees’ helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongshun Wang or Xuri Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 352 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Gong, H., Liu, H. et al. Theoretical study on the structures, isomerization and stability of SiC4 isomers. Theor Chem Acc 126, 15–25 (2010). https://doi.org/10.1007/s00214-009-0646-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0646-5

Keywords

Navigation