Advertisement

Theoretical Chemistry Accounts

, 124:431 | Cite as

Study on structures and electron affinities of small potassium–silicon clusters Si n K (n = 2–8) and their anions with Gaussian-3 theory

  • Dong-Sheng Hao
  • Jin-Rong Liu
  • Wen-Guang Wu
  • Ju-Cai YangEmail author
Regular Article

Abstract

The neutral Si n K (n = 2–8) clusters and their anions have been systematically studied by means of the higher level of Gaussian-3 schemes. Equilibrium geometries and electron affinities have been calculated and are discussed for each considered size. For neutral Si n K clusters, the ground state structure is found to be “attaching structure”, in which the K atom is bound to Si n clusters. The most stable isomer for their anions, however, is found to be “substitutional structures”, which is derived from Si(n+1) by replacing the Si atom with a K. The dissociation energies of K atom from the lowest energy structures of Si n K have also been estimated to examine relative stabilities.

Keywords

SinStructures Electron affinities Dissociation energies G3 theory 

Notes

Acknowledgments

This work has been financially supported by a research grant (Grant No. NJ05052) administered by the Science and Research Foundation of Higher Education of Inner Mongolia and by the NCET Grant (Grant No. NCET-06-0267) from the Ministry of Education of the People’s Republic of China.

Supplementary material

214_2009_635_MOESM1_ESM.doc (3.6 mb)
Supplemantary material (DOC 3704 kb)

References

  1. 1.
    Beck SM (1989) J Chem Phys 90:6306CrossRefGoogle Scholar
  2. 2.
    Ohara M, Koyasu K, Nakajima A, Kaya K (2003) Chem Phys Lett 371:490CrossRefGoogle Scholar
  3. 3.
    Binning RC Jr, Bacelo DE (2005) J Phys Chem A 109:754CrossRefGoogle Scholar
  4. 4.
    Koyasu K, Akutsu M, Mitsui M, Nakajima A (2005) J Am Chem Soc 127:4998CrossRefGoogle Scholar
  5. 5.
    Jaeger JB, Jaeger TD, Duncan MA (2006) J Phys Chem A 110:9310CrossRefGoogle Scholar
  6. 6.
    Yang JC, Lin LH, Zhang YS, Jalbout AF (2008) Theor Chem Account 121:83CrossRefGoogle Scholar
  7. 7.
    Hao DS, Liu JR, Yang JC (2008) J Phys Chem A 112:10113CrossRefGoogle Scholar
  8. 8.
    Rabilloud F, Sporea CJ (2007) Comput Meth Sci Eng 7:273Google Scholar
  9. 9.
    Kaya K, Sugioka T, Taguwa T, Hoshino K, Nakajima A (1993) Z Phys D 26:S201CrossRefGoogle Scholar
  10. 10.
    Kishi R, Iwata S, Nakajima A, Kaya K (1997) J Chem Phys 107:3056CrossRefGoogle Scholar
  11. 11.
    Kishi R, Kawamata H, Negishi Y, Iwata S, Nakajima A, Kaya K (1997) J Chem Phys 107:10029CrossRefGoogle Scholar
  12. 12.
    Zubarev DY, Boldyrev AI, Li X, Cui LF, Wang LS (2005) J Phys Chem A 109:11385CrossRefGoogle Scholar
  13. 13.
    Zubarev DY, Alexandrova AN, Boldyrev AI, Cui LF, Li X, Wang LS (2006) J Chem Phys 124:124305CrossRefGoogle Scholar
  14. 14.
    Sporea C, Rabilloud F, Cosson X, Allouche AR, Aubert-Frécon M (2006) J Phys Chem A 110:6032CrossRefGoogle Scholar
  15. 15.
    Sporea C, Rabilloud F, Allouche AR, Frécon M (2006) J Phys Chem A110:1046Google Scholar
  16. 16.
    Sporea C, Rabilloud F, Aubert-Frécon M (2007) J Mol Struct Theochem 802:85CrossRefGoogle Scholar
  17. 17.
    Sporea C, Rabilloud F (2007) J Chem Phys 127:164306CrossRefGoogle Scholar
  18. 18.
    Wei S, Barnett RN, Landman U (1997) Phys Rev B 55:7953Google Scholar
  19. 19.
    Zhao GF, Sun JM, Liu X, Guo LJ, Luo YH (2008) J Mol Struct Theochem 851:348CrossRefGoogle Scholar
  20. 20.
    Wang H, Lu WC, Li ZS, Sun CC (2005) J Mol Struct Theochem 730:263CrossRefGoogle Scholar
  21. 21.
    Li SD, Ren GM, Jin ZH (2003) J Chem Phys 119:10063CrossRefGoogle Scholar
  22. 22.
    Lin LH, Yang JC, Ning HM, Hao DS, Fan HW (2008) J Mol Struct Theochem 851:197CrossRefGoogle Scholar
  23. 23.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764CrossRefGoogle Scholar
  24. 24.
    Curtiss LA, Redfern PC, Rassolov V, Kedziora G, Pople JA (2001) J Chem Phys 114:9287CrossRefGoogle Scholar
  25. 25.
    Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc., WallingfordGoogle Scholar
  26. 26.
    Pak C, Rienstra-Kiracofe JC, Schaefer HF (2000) J Phys Chem A 104:11232CrossRefGoogle Scholar
  27. 27.
    Xu C, Taylor TR, Burton GR, Neumark DM (1998) J Chem Phys 108:7645CrossRefGoogle Scholar
  28. 28.
    Xu WG, Yang JC, Xiao WS (2004) J Phys Chem A 108:11345CrossRefGoogle Scholar
  29. 29.
    Yang JC, Bai X, Li CP, Xu WG (2005) J Phys Chem A 109:5717CrossRefGoogle Scholar
  30. 30.
    Raghavachari K (1986) J Chem Phys 84:5672CrossRefGoogle Scholar
  31. 31.
    Raghavachari K, Rohlfing CM (1988) J Chem Phys 89:2219CrossRefGoogle Scholar
  32. 32.
    Yang JC, Xu WG, Xiao WS (2005) J Mol Struct Theochem 719:89CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Dong-Sheng Hao
    • 1
  • Jin-Rong Liu
    • 1
  • Wen-Guang Wu
    • 1
  • Ju-Cai Yang
    • 2
    Email author
  1. 1.School of Chemical EngineeringInner Mongolia University of TechnologyHohhotPeople’s Republic of China
  2. 2.School of Energy and Power EngineeringInner Mongolia University of TechnologyHohhotPeople’s Republic of China

Personalised recommendations