Skip to main content
Log in

First principles calculations on the origin of violet-blue and green light photoluminescence emission in SrZrO3 and SrTiO3 perovskites

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The photoluminescence (PL) emission from SrZrO3 (SZ) and SrTiO3 (ST) crystalline, quasi-crystalline, and quasi-amorphous samples, prepared by the polymeric precursor method, was examined by ab initio quantum mechanical calculations. It was used in the modeling the structural model consisting of one pyramidal TiO5 or ZrO5 unit piled upon the TiO6 or ZrO6, which are representative of disordered structures of quasi-crystalline structures such as ST and SZ. The structural crystallization process was monitored by X-ray diffraction. In quasi-crystalline powders, the photoluminescence (PL) in the visible region showed different peak positions and intensities in SZ and ST. The PL emission was linked to distinct distortions in perovskite lattices and the emission of two colors—violet-blue in SZ and green in ST—was also examined in the light of favorable structural and electronic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lines ME, Glas AM (1977) Principles and applications of ferroelectrics and related materials. Claredum, Oxford

    Google Scholar 

  2. Hsiang HI, Hsi CS, Huang CC, Fu SL (2008) Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC. J Alloy Compd 459:307

    Article  CAS  Google Scholar 

  3. Bannikov VV, Shein IR, Kozhevnikov VL, Ivanovskii AL (2008) Magnetism without magnetic ions in non-magnetic perovskites SrTiO3, SrZrO3 and SrSnO3. J Magn Magn Mater 320:936

    Article  CAS  Google Scholar 

  4. Takahashi Y, Konishi T, Soga K, Funwara T (2008) Origin of photoluminescence in suzukiite-type BaTiSi2O7. J Ceram Soc Jpn 116:1104

    Article  CAS  Google Scholar 

  5. Luo L, Ren HZ, Tang XG, Ding CR, Wang HZ, Chen XM, Jia JK, Hu ZF (2008) Room temperature tunable blue-green luminescence in nanocrystalline (Pb1-xSrx)TiO3 thin film grown on yttrium-doped zirconia substrate. J Appl Phys 104:043514

    Article  Google Scholar 

  6. Liu AY, Xue JQ, Meng XJ, Sun JL, Huang ZM, Chu JH (2008) Infrared optical properties of Ba(Zr0.20Ti0.80)O-3 and Ba(Zr0.30Ti0.70)O-3 thin films prepared by sol-gel method. Appl Surf Sci 254:5660

    Article  CAS  Google Scholar 

  7. Sambrano JR, Longo VM, Longo E, Taft CA (2007) Electronic and structural properties of the (001) SrZrO3 surface. Theochem J Mol Struct 813:49

    Article  CAS  Google Scholar 

  8. Iwahara H, Yajima T, Hibino T, Ushida H (1993) Performance of solid oxide fuel-cell using proton and oxide-ion mixed conductors based on bace1-Xsmxo3-Alpha. J Electrochem Soc 140:1687

    Article  CAS  Google Scholar 

  9. Kurita N, Fukatsu N, Ohashi T (1994) Hydrogen analyzer based on coulometric titration using proton conduction solid-electrolyte. J Jpn Inst Met 58:782

    CAS  Google Scholar 

  10. Yajima T, Koide K, Takai H, Fukatsu N, Iwahara H (1995) Application of hydrogen sensor using proton conductive ceramics as a solid-electrolyte to aluminum casting industries. Solid State Ion 79:333

    Article  CAS  Google Scholar 

  11. Mimuro S, Shibako S, Oyama Y, Kobayashi K, Higuchi T, Shin S, Yamaguchi S (2007) Proton incorporation and defect chemistry of Yb-doped BaPrO3. Solid State Ion 178:641

    Article  CAS  Google Scholar 

  12. Roth RS (1957) Classification of perovskite and other Abo3-type compounds. J Res Natl Bur Stand 58:75

    CAS  Google Scholar 

  13. Swanson HE, Tatge E (1951) Standard X-ray diffraction patterns. Acta Crystallogr Sect B-Struct Sci 46:318

    Google Scholar 

  14. deLigny D, Richet P (1996) High-temperature heat capacity and thermal expansion of SrTiO3 and SrZrO3 perovskites. Phys Rev B 53:3013

    Article  CAS  Google Scholar 

  15. Kennedy BJ, Howard CJ, Chakoumakos BC (1999) High-temperature phase transitions in SrZrO3. Phys Rev B 59:4023

    Article  CAS  Google Scholar 

  16. Matsuda T, Yamanaka S, Kurosaki K, Kobayashi S (2003) High temperature phase transitions of SrZrO3. J Alloy Compd 351:43

    Article  CAS  Google Scholar 

  17. Cavalcante LS, Simoes AZ, Sczancoski JC, Longo VM, Erlo R, Escote MT, Longo E, Varela JA (2007) SrZrO3 powders obtained by chemical method: synthesis, characterization and optical absorption behaviour. Solid State Sci 9:1020

    Article  CAS  Google Scholar 

  18. Chen CH, Zhu WG, Chen XF, Yu T, Yao X (2003) Preparation and characteristic study of MOD derived dielectric SrZrO3 thin films. Ferroelectrics 292:29

    Article  CAS  Google Scholar 

  19. Capizzi M, Frova A (1970) Optical gap of strontium titanate (deviation from Urbach tail behavior). Phys Rev Lett 25:1298

    Article  CAS  Google Scholar 

  20. Hasegawa T, Shirai M, Tanaka K (2000) Localizing nature of photo-excited states in SrTiO3. J Lumines 87–9:1217

    Article  Google Scholar 

  21. Suzuki H, Bando H, Ootuka Y, Inoue IH, Yamamoto T, Takahashi K, Nishihara Y (1996) Superconductivity in single-crystalline Sr1−x La x TiO3. J Phys Soc Jpn 65:1529

    Article  CAS  Google Scholar 

  22. Koonce CS, Cohen ML, Schooley JF, Hosler WR, Pfeiffer ER (1967) Superconducting transition temperatures of semiconducting Srtio3. Phys Rev 163:380

    Google Scholar 

  23. Zhang WF, Tang JW, Ye JH (2006) Photoluminescence and photocatalytic properties of SrSnO3 perovskite. Chem Phys Lett 418:174

    Article  CAS  Google Scholar 

  24. Chapman BD, Stern EA, Han SW, Cross JO, Seidler GT, Gavrilyatchenko V, Vedrinskii RV, Kraizman VL (2005) Diffuse X-ray scattering in perovskite ferroelectrics. Phys Rev B 71:020102

    Article  Google Scholar 

  25. Zhang MS, Yu J, Chu JH, Chen Q, Chen WC (2003) Microstructures and photoluminescence of barium titanate nanocrystals synthesized by the hydrothermal process. J Mater Process Technol 137:78

    Article  CAS  Google Scholar 

  26. Longo E, Orhan E, Pontes FM, Pinheiro CD, Leite ER, Varela JA, Pizani PS, Boschi TM, Lanciotti F, Beltran A, Andres J (2004) Density functional theory calculation of the electronic structure of Ba0.5Sr0.5TiO3: photoluminescent properties and structural disorder. Phys Rev B 69:125115

    Article  Google Scholar 

  27. Landau LD (1933) Phys Z Sowjetunion 3:644

    Google Scholar 

  28. Qiu Y, Jiang YJ, Tong GP, Zhang JF (2008) Dynamic process of self-trapped polaron in photoexcited SrTiO3. Phys Lett A 372:2920

    Article  CAS  Google Scholar 

  29. Leonelli R, Brebner JL (1986) Time-resolved spectroscopy of the visible emission band in strontium–titanate. Phys Rev B 33:8649

    Article  CAS  Google Scholar 

  30. Eglitis RI, Kotomin EA, Trepakov VA, Kapphan SE, Borstel G (2002) Quantum chemical modelling of electron polarons and ‘green’ luminescence in PbTiO3 perovskite crystals. J Phys Condes Matter 14:L647

    Article  CAS  Google Scholar 

  31. Meng JF, Huang YB, Zhang WF, Du ZL, Zhu ZQ, Zou GT (1995) Photoluminescence in Nanocrystalline Batio3 and Srtio3. Phys Lett A 205:72

    Article  CAS  Google Scholar 

  32. Vikhnin VS, Kaplyanskii AA, Kutsenko AB, Liu GK, Beitz JV, Kapphan SE (2001) “Charge transfer-lattice” clusters induced by charged impurities. J Lumines 94:775

    Article  Google Scholar 

  33. Vikhnin VS, Eglitis RI, Kapphan SE, Kotomin EA, Borstel G (2001) A new phase in ferroelectric oxides: the phase of charge transfer vibronic excitons. Europhys Lett 56:702

    Article  CAS  Google Scholar 

  34. Vikhnin VS, Kapphan S (1998) Vibronic charge-transfer excitons: possible nature of the unusual properties of virtual perovskitelike ferroelectrics. Phys Sol Stat 40:834

    Article  Google Scholar 

  35. Eglitis RI, Kotomin EA, Borstel G, Kapphan SE, Vikhnin VS (2003) Semi-empirical calculations of the electronic and atomic structure of polarons and excitons in ABO(3) perovskite crystals. Comput Mater Sci 27:81

    Article  CAS  Google Scholar 

  36. Meng JF, Rai BK, Katiyar RS, Zou GT (1997) Study of visible emission and phase transition in nanocrystalline A(1 − x)A′ x TiO3 systems. Phys Lett A 229:254

    Article  CAS  Google Scholar 

  37. Longo VM, de Figueiredo AT, de Lazaro S, Gurgel MF, Costa MGS, Paiva-Santos CO, Varela JA, Longo E, Mastelaro VR, De Vicente FS, Hernandes AC, Franco RWA (2008) Structural conditions that leads to photoluminescence emission in SrTiO3: an experimental and theoretical approach. J Appl Phys 104:023515

    Article  Google Scholar 

  38. Longo VM, Cavalcante LS, Erlo R, Mastelaro VR, de Figueiredo AT, Sambrano JR, de Lazaro S, Freitas AZ, Gomes L, Vieira ND, Varela JA, Longo E (2008) Strong violet-blue light photoluminescence emission at room temperature in SrZrO3: joint experimental and theoretical study. Acta Mater 56:2191

    Article  CAS  Google Scholar 

  39. Schroder DK (1990) Semiconductor material and device characterization. Wiley, New York

    Google Scholar 

  40. Cuong DD, Lee B, Choi KM, Ahn HS, Han S, Lee J (2007) Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO3: LDA + U study. Phys Rev Lett 98:115503

    Article  Google Scholar 

  41. Onishi T (2008) The Hybrid-DFT study on bandgap estimation for the perovskite-type titanium oxide of SrTiO3. Int J Quantum Chem 108:2856

    Article  CAS  Google Scholar 

  42. Kan DS, Terashima T, Kanda R, Masuno A, Tanaka K, Chu SC, Kan H, Ishizumi A, Kanemitsu Y, Shimakawa Y, Takano M (2005) Blue-light emission at room temperature from Ar+-irradiated SrTiO3. Nat Mater 4:816

    Article  Google Scholar 

  43. Kan D, Kanda R, Kanemitsu Y, Shimakawa Y, Takano M, Terashima T, Ishizumi A (2006) Blue luminescence from electron-doped SrTiO3. Appl Phys Lett 88:191916

    Article  Google Scholar 

  44. Kan D, Sakata O, Kimura S, Takano M, Shimakawa Y (2007) Structural characterization of Ar+-irradiated SrTiO3 showing room-temperature blue luminescence. Jpn J Appl Phys Part 2 Lett Express Lett 46:L471

    Article  CAS  Google Scholar 

  45. Zhang CM, Li CX, Yang J, Cheng ZY, Hou ZY, Fan Y, Lin J (2009) Tunable luminescence in monodisperse zirconia spheres. Langmuir 25:7078

    Google Scholar 

  46. Pontes FM, Longo E, Leite ER, Lee EJH, Varela JA, Pizani PS, Campos CEM, Lanciotti F, Mastelaro V, Pinheiro CD (2003) Photoluminescence at room temperature in amorphous SrTiO3 thin films obtained by chemical solution deposition. Mater Chem Phys 77:598

    Article  CAS  Google Scholar 

  47. Orhan E, Pontes FM, Pinheiro CD, Boschi TM, Leite ER, Pizani PS, Beltran A, Andres J, Varela JA, Longo E (2004) Origin of photo luminescence in SrTiO3: a combined experimental and theoretical study. J Solid State Chem 177:3879

    Article  CAS  Google Scholar 

  48. Zhang CM, Lin CK, Li CX, Quan ZW, Liu XM, Lin J (2008) Enhanced luminescence of BPO4 by mixing with SiO2 and Al2O3. J Phys Chem C 112:2183

    Article  CAS  Google Scholar 

  49. Lin CK, Luo Y, You H, Quan Z, Zhang J, Fang J, Lin J (2006) Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish-white luminescent material. Chem Mat 18:458

    Article  CAS  Google Scholar 

  50. Saunders V, Dovesi R, Roetti C, Orlando R, Zicovich-Wilson CM, Harrison NM, Doll K, Civalleri B, Bush B, DArco PLM (2003) CRYSTAL 03 users manual. University of Torino, Torino

    Google Scholar 

  51. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  52. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  53. Muscat J, Wander A, Harrison NM (2001) On the prediction of band gaps from hybrid functional theory. Chem Phys Lett 342:397

    Article  CAS  Google Scholar 

  54. Arevalo-Lopez AM, Alario-Franco AM (2007) J Solid State Chem 180:3271

    Article  CAS  Google Scholar 

  55. Salmon PS (2002) Amorphous materials—order within disorder. Nat Mater 1:87

    Article  CAS  Google Scholar 

  56. Hufnagel TC (2004) Amorphous materials—finding order in disorder. Nat Mater 3:666

    Article  CAS  Google Scholar 

  57. Moreira ML, Andres J, Longo VM, Li MS, Varela JA, Longo E (2009) Photoluminescent behavior of SrZrO3/SrTiO3 multilayer thin films. Chem Phys Lett 473:293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian research funding institutions FAPESP/CEPID, CNPq/PRONEX and CAPES for backing this work. J.A. acknowledges the Ministerio de Educación y Cultura of the Spanish Government for financing his research stay.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valéria M. Longo or Mário Lúcio Moreira.

Additional information

This article renders tribute to Professor Dr. Ricardo Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longo, V.M., Cavalcante, L.S., Costa, M.G.S. et al. First principles calculations on the origin of violet-blue and green light photoluminescence emission in SrZrO3 and SrTiO3 perovskites. Theor Chem Acc 124, 385–394 (2009). https://doi.org/10.1007/s00214-009-0628-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0628-7

Keywords

Navigation