Skip to main content
Log in

A joint theoretical and experimental investigation on the 13C and 1H NMR chemical shifts of coumarin derivatives

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

1H and 13C NMR chemical shifts of coumarin derivatives have been determined using first principles approaches with and without accounting for the effects of the solvent and compared to experiment in order to assess their reliability. Good linear relationships are obtained between theory and experiment, which allows correcting the calculated values for systematic errors. This is particularly the case when using the PCM scheme to model the solvent effects because the δ values larger than 150 ppm are more difficult to reproduce. The final accuracy of the method amounts to about 1 ppm for 13C and 0.05 ppm for 1H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Helgaker T, Jaszunski M, Ruud K (1999) Chem Rev 99:293

    Article  CAS  Google Scholar 

  2. Gauss J, Stanton JF (2002) Adv Chem Phys 123:355

    Article  CAS  Google Scholar 

  3. Kaupp M, Bühl M, Malkin VG (eds) (2004) Calculation of NMR and EPR parameters. Wiley-VCH, Weinheim

  4. Bagno A, Rastrelli F, Saielli G (2006) Chem Eur J 12:5514

    Article  CAS  Google Scholar 

  5. Bifulco G, Dambruoso P, Gomez-Paloma L, Riccio R (2007) Chem Rev 107:3744

    Article  CAS  Google Scholar 

  6. Ando I, Kuroki S, Kurosu H, Yamanobe T (2001) Prog NMR Spectrosc 39:79

    Article  CAS  Google Scholar 

  7. d’Antuono Ph, Botek E, Champagne B, Wieme J, Reyniers M–F, Marin GB, Adriaensens PJ, Gelan JM (2007) Chem Phys Lett 436:388

    Article  Google Scholar 

  8. Chesnut DB (1996) The ab initio computation of nuclear magnetic resonance chemical shielding. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 8. VCH, Weinheim, p 245

  9. Rablen PR, Pearlman SA, Finkbiner J (1999) J Phys Chem A 103:7357

    Article  CAS  Google Scholar 

  10. d’Antuono Ph, Botek E, Champagne B, Spassova M, Denkova P (2006) J Chem Phys 125:144309

    Article  Google Scholar 

  11. Bifulco G, Gomez-Paloma L, Riccio R (2003) Tetrahedron Lett 44:7137

    Article  CAS  Google Scholar 

  12. Trabelsi M, Salem M, Champagne B (2003) Org Biomol Chem 1:3839

    Article  CAS  Google Scholar 

  13. Poater J, van Lenthe E, Baerends EJ (2003) J Chem Phys 118:8584

    Article  CAS  Google Scholar 

  14. Allen MJ, Keal TW, Tozer DJ (2003) Chem Phys Lett 380:380

    Article  Google Scholar 

  15. Tähtinen P, Bagno A, Klika KD, Pihlaja K (2003) J Am Chem Soc 125:4609

    Article  Google Scholar 

  16. Hieringer W, Della Sala F, Görling A (2004) Chem Phys Lett 383:115

    Article  CAS  Google Scholar 

  17. Arbuznikov AV, Kaupp M (2004) Chem Phys Lett 386:8

    Article  CAS  Google Scholar 

  18. Gryffer-Keller A, Molchanov S (2004) Mol Phys 102:1903

    Article  Google Scholar 

  19. Wiitala KW, Hoye TR, Cramer CJ (2006) J Chem Theor Comput 2:1085

    Article  CAS  Google Scholar 

  20. Wiitala KW, Al-Rashid ZF, Dvornikovs V, Hoye TR, Cramer CJ (2007) J Phys Org Chem 20:345

    Article  CAS  Google Scholar 

  21. Wiitala KW, Cramer CJ, Hoye TR (2007) Magn Reson Chem 45:819

    Article  CAS  Google Scholar 

  22. Rychnovsky SD (2006) Org Lett 8:2895

    Article  CAS  Google Scholar 

  23. Bagno A, Rastrelli F, Saielli G (2007) J Org Chem 72:7373

    Article  CAS  Google Scholar 

  24. Pennanen TS, Lantto P, Sillanpää AJ, Vaara J (2007) J Phys Chem A 111:182

    Article  CAS  Google Scholar 

  25. Bassarello C, Bifulco G, Montoro P, Skhirtladze A, Kemertelidze E, Pizza C, Piacente S (2007) Tetrahedron 63:148

    Article  CAS  Google Scholar 

  26. Baldridge KK, Siegel JS (2008) Theor Chem Acc 120:95

    Article  CAS  Google Scholar 

  27. Habib-Jiwan J-L, Branger C, Soumillon J-Ph, Valeur B (1998) J Photochem Photobiol A Chem 116:127

    Article  CAS  Google Scholar 

  28. Leray I, Habib-Jiwan J-L, Branger C, Soumillon JPh, Valeur B (2000) J Photochem Photobiol A Chem 135:163

    Article  CAS  Google Scholar 

  29. Taziaux D, Soumillon J-Ph, Habib-Jiwan J-L (2004) J Photochem Photobiol A Chem 162:599

    Article  CAS  Google Scholar 

  30. Maton L, Taziaux D, Soumillion J-Ph, Habib Jiwan J-L (2005) J Mater Chem 15:2928

    Article  CAS  Google Scholar 

  31. Löhr HG, Vögtle F (1985) Acc Chem Res 18:65

    Article  Google Scholar 

  32. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCH Verlag GmbH, Weinheim

  33. Fedorova OA, Fedorov YV, Vedernikov AI, Gromov SP, Yescheulova OV, Alfimov MV, Woerner M, Bossmann S, Braun A, Saltiel J (2002) J Phys Chem A 106:6213

    Article  CAS  Google Scholar 

  34. Korolev VV, Vorobyev DYu, Glebov EM, Grivin VP, Plyusnin VF, Koshkin AV, Fedorova OA, Gromov SP, Alfimov MV, Shklyaev YV, Vshivkova TS, Rozhkova YS, Tolstikov AG, Lokshin VV, Samat A (2007) J Photochem Photobiol A Chem 192:75

    Article  CAS  Google Scholar 

  35. Berthet J, Micheau JC, Lokshin V, Vales M, Vermeersch G, Delbaere S (2008) Org Lett 10:3773

    Article  CAS  Google Scholar 

  36. Ditchfield R (1971) J Am Chem Soc 93:5287

    Article  CAS  Google Scholar 

  37. Wolinski K, Hilton JF, Pulay P (1990) J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  38. Cammi R, Mennucci B, Tomasi J (1999) J Chem Phys 110:7627

    Article  CAS  Google Scholar 

  39. Manalo MN, de Dios AC, Cammi R (2000) J Phys Chem A 104:9600

    Article  CAS  Google Scholar 

  40. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) GAUSSIAN 03, Revision C.02. Gaussian, Inc., Wallingford

    Google Scholar 

  42. Filatov M, Cremer D (2005) J Chem Phys 123:124101

    Article  Google Scholar 

  43. d’Antuono Ph, Botek E, Champagne B, Wieme J, Reyniers M–F, Marin GB, Adriaensens PJ, Gelan JM (2005) Chem Phys Lett 211:207

    Article  Google Scholar 

  44. d’Antuono Ph, Botek E, Champagne B, Wieme J, Reyniers M-F, Marin GB, Adriaensens PJ, Gelan JM (2008) J Phys Chem B 112:14804

    Article  Google Scholar 

Download references

Acknowledgments

This work is dedicated to Prof. S. Suhai, a leading scientist in the field of polymer electronic structure calculations. This work was supported from research grants from the Belgian Government (IUAP No P06-27 “Functional Supramolecular Systems”). Ph. d’A. is grateful to the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA) for his PhD grant. E.B. thanks the IUAP program No P06-27 for her postdoctoral grants. B.C. thanks the Belgian National Fund for Scientific Research for his Research Director position and L.M. for her research fellow position. The calculations were performed on the Interuniversity Scientific Computing Facility (ISCF), installed at the Facultés Universitaires Notre-Dame de la Paix (Namur, Belgium), for which the authors gratefully acknowledge the financial support of the FNRS-FRFC, and the “Loterie Nationale” for the convention no 2.4.617.07.F, and of the FUNDP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Champagne.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

d’Antuono, P., Botek, E., Champagne, B. et al. A joint theoretical and experimental investigation on the 13C and 1H NMR chemical shifts of coumarin derivatives. Theor Chem Acc 125, 461–470 (2010). https://doi.org/10.1007/s00214-009-0625-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0625-x

Keywords

Navigation