Advertisement

Theoretical Chemistry Accounts

, 124:331 | Cite as

Substituent effects in the tuning of excited-state intramolecular proton transfer and optical properties of the derivatives of 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole

  • Ruifa Jin
  • Jingping ZhangEmail author
Regular Article

Abstract

The intramolecular proton transfer process and optical properties of a series of derivatives of 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole (HOXD) have been studied. The effects of electron-donating and -withdrawing substituents on the intramolecular proton transfer and optical properties in the S0 and S1 states have been investigated to find out the relationships between them and the Hammett substituent constants (δ p). The statistically valid linear correlations are observed between the δ p and the ionization potential (IP), electron affinity (EA), the relative energies (ΔE) and the direct energy barriers (ΔE d) of the intramolecular proton transfer reactions, and the optical properties of HOXD and its substituted derivatives. The λ abs, λ fl, and λ ph of the electron-withdrawing substituted derivatives have bathochromic shifts, while the corresponding values of the electron-donating substituted derivatives show hypsochromic shifts compared with the parent compound HOXD. A successful tuning in the emission color was achieved: the emission wavelength was substituent δ p dependent, providing a powerful strategy for predicting the optical properties of novel electroluminophores.

Graphical Abstract

The effects of substituents on the intramolecular proton transfer and optical properties for 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole and its diverse derivatives have been theoretically investigated with the aim to get the relationships between the ESIPT reactions, optical properties, and the Hammett substituent constants (δ p).

Keywords

Excited-state intramolecular proton transfer (ESIPT) Substituent effects UV–Vis and fluorescence spectra 2-(2-Hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole (HOXD) 

Notes

Acknowledgments

Financial supports from the NSFC (Nos. 50873020, 20773022), the NCET-06-0321, and the NENU-STB-07-007 are gratefully acknowledged.

Supplementary material

214_2009_613_MOESM1_ESM.doc (204 kb)
Supplementary material 1 (DOC 224 kb)

References

  1. 1.
    Chen C-L, Lin C-W, Hsieh C-C, Lai C-H, Lee G-H, Wang C-C, Chou P-T (2009) J Phys Chem A 113:205CrossRefGoogle Scholar
  2. 2.
    Park S, Seo J, Kim SH, Park SY (2008) Adv Funct Mater 18:726CrossRefGoogle Scholar
  3. 3.
    Nosenko Y, Wiosna-Sałyga G, Kunitski M, Petkova I, Singh A, Buma WJ, Thummel RP, Brutschy B, Waluk J (2008) Angew Chem Int Ed Engl 47:6037CrossRefGoogle Scholar
  4. 4.
    Migani A, Bearpark MJ, Olivucci M, Robb MA (2007) J Am Chem Soc 129:3703CrossRefGoogle Scholar
  5. 5.
    Shynkar VV, Klymchenko AS, Kunzelmann C, Duportail G, Muller CD, Demchenko AP, Freyssinet J-M, Mely Y (2007) J Am Chem Soc 129:2187CrossRefGoogle Scholar
  6. 6.
    Wu Y, Peng X, Fan J, Gao S, Tian M, Zhao J, Sun S (2007) J Org Chem 72:62CrossRefGoogle Scholar
  7. 7.
    Henary MM, Wu Y, Cody J, Sumalekshmy S, Li J, Mandal S, Fahrni CJ (2007) J Org Chem 72:4784CrossRefGoogle Scholar
  8. 8.
    Qian Y, Li S, Zhang G, Wang Q, Wang S, Xu H, Li C, Li Y, Yang G (2007) J Phys Chem B 111:5861CrossRefGoogle Scholar
  9. 9.
    Sakota K, Inoue N, Komoto Y, Sekiya H (2007) J Phys Chem A 111:4596CrossRefGoogle Scholar
  10. 10.
    Strandjord AJG, Courtney SH, Friedrich DM, Barbara PF (1983) J Phys Chem 87:1125CrossRefGoogle Scholar
  11. 11.
    McMorrow D, Kasha M (1984) J Phys Chem 88:2235CrossRefGoogle Scholar
  12. 12.
    Schwartz BJ, Peteanu LA, Harris CB (1992) J Phys Chem 96:3591CrossRefGoogle Scholar
  13. 13.
    Sengupta PK, Kasha M (1979) Chem Phys Lett 68:382CrossRefGoogle Scholar
  14. 14.
    Das K, Sarkar N, Ghosh AK, Majumdar D, Nath DN, Bhattacharyya K (1994) J Phys Chem 98:9126CrossRefGoogle Scholar
  15. 15.
    Douhal A, Lahmani F, Zewail AH (1996) Chem Phys 207:477CrossRefGoogle Scholar
  16. 16.
    Douhal A, Lahmani F, Zehnacker-Rentien A (1993) Chem Phys 178:493CrossRefGoogle Scholar
  17. 17.
    Sytnik A, Kasha M (1994) Proc Natl Acad Sci USA 91:8627CrossRefGoogle Scholar
  18. 18.
    Liang F, Wang L, Ma D, Jing X, Wang F (2002) Appl Phys Lett 81:4CrossRefGoogle Scholar
  19. 19.
    Tong H, Zhou G, Wang L, Jing X, Wang F, Zhang J (2003) Tetrahedron Lett 44:131CrossRefGoogle Scholar
  20. 20.
    Brunner K, Dijken AV, Börner H, Bastiaansen JJAM, Kiggen NMM, Langeveld BMW (2004) J Am Chem Soc 126:6035CrossRefGoogle Scholar
  21. 21.
    Yi Y, Zhu L, Shuai Z (2008) Macromol Theory Simul 17:12CrossRefGoogle Scholar
  22. 22.
    Parthenopoulos DA, McMorrow D, Kasha M (1991) J Phys Chem 95:2668CrossRefGoogle Scholar
  23. 23.
    Ma D, Liang F, Wang L, Lee ST, Hung L (2002) Chem Phys Lett 358:24CrossRefGoogle Scholar
  24. 24.
    Keck J, Kramer HEA, Port H, Hirsch T, Fischer P, Rytz G (1996) J Phys Chem 100:14468CrossRefGoogle Scholar
  25. 25.
    Douhal A, Sastre R (1994) Chem Phys Lett 219:91CrossRefGoogle Scholar
  26. 26.
    Photochromism: memories and switches (2000) Special issue of Chem Rev 100Google Scholar
  27. 27.
    Doroshenko AO, Posokhov EA, Verezubova AA, Ptyagina LM (2000) J Phys Org Chem 13:253CrossRefGoogle Scholar
  28. 28.
    Doroshenko AO, Posokhov EA, Verezubova AA, Ptyagina LM, Skripkina VT, Shershukov VM (2002) Photochem Photobiol Sci 1:92CrossRefGoogle Scholar
  29. 29.
    Gaenko AV, Devarajan A, Tselinskii IV, Ryde U (2006) J Phys Chem A 110:7935CrossRefGoogle Scholar
  30. 30.
    Tamoto N, Adachi C, Nagai K (1997) Chem Mater 9:1077CrossRefGoogle Scholar
  31. 31.
    Uchida M, Adachi C, Koyama T, Taniguchi Y (1999) J Appl Phys 86:1680CrossRefGoogle Scholar
  32. 32.
    Wang JF, Jabbour GE, Mash EA, Anderson J, Zhang Y, Lee PA, Armstrong NR, Peyghambarian N, Kippelen B (1999) Adv Mater 11:1266CrossRefGoogle Scholar
  33. 33.
    Kido J, Hayase H, Hongawa K, Nagai K, Okuyama K (1994) Appl Phys Lett 65:2124CrossRefGoogle Scholar
  34. 34.
    Antoniadis H, Inbasekaran M, Woo EP (1998) Appl Phys Lett 73:3055CrossRefGoogle Scholar
  35. 35.
    Hu Y, Zhang Y, Liang F, Wang L, Ma D, Jing X (2003) Synth Met 137:1123CrossRefGoogle Scholar
  36. 36.
    Yang Z, Yang S, Zhang J (2007) J Phys Chem A 111:6354CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian Inc, WallingfordGoogle Scholar
  38. 38.
    Foresman JB, Head-Gordon M, Pople JA, Frisch MJ (1992) J Phys Chem 96:135CrossRefGoogle Scholar
  39. 39.
    Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009CrossRefGoogle Scholar
  40. 40.
    Barone V, Polimeno A (2007) Chem Soc Rev 36:1724CrossRefGoogle Scholar
  41. 41.
    Jacquemin D, Perpete EA, Ciofini I, Adamo C (2009) Acc Chem Res 42:326CrossRefGoogle Scholar
  42. 42.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  43. 43.
    Sun M, Niu B, Zhang J (2008) J Mol Struct: Theochem 862:85CrossRefGoogle Scholar
  44. 44.
    Sun M, Niu B, Zhang J (2008) Theor Chem Acc 119:489CrossRefGoogle Scholar
  45. 45.
    Gahungu G, Zhang J (2005) J Mol Struct: Theochem 755:19CrossRefGoogle Scholar
  46. 46.
    Li Z, Zhang J (2006) Chem Phys 331:159CrossRefGoogle Scholar
  47. 47.
    Domingo LR, Picher MT, Zaragozá RJ (1998) J Org Chem 63:9183CrossRefGoogle Scholar
  48. 48.
    Shukla MK, Leszczynski J (2005) Int J Quantum Chem 105:387CrossRefGoogle Scholar
  49. 49.
    Halls MD, Schlegel HB (2001) Chem Mater 13:2632CrossRefGoogle Scholar
  50. 50.
    Zhang J, Frenking G (2004) J Phys Chem A 108:10296CrossRefGoogle Scholar
  51. 51.
    Zhang J, Frenking G (2004) Chem Phys Lett 394:120CrossRefGoogle Scholar
  52. 52.
    Gahungu G, Zhang J (2005) J Phys Chem B 109:17762CrossRefGoogle Scholar
  53. 53.
    Gahungu G, Zhang J (2005) Chem Phys Lett 410:302CrossRefGoogle Scholar
  54. 54.
    Hu B, Gahungu G, Zhang J (2007) J Phys Chem A 111:4965CrossRefGoogle Scholar
  55. 55.
    Ahlrichs R, Bär M, Häser M, Horn H, Kälmel C (1989) Chem Phys Lett 162:165CrossRefGoogle Scholar
  56. 56.
    Santos L, Vargas A, Moreno M, Manzano BR, Lluch JM, Douhal A (2004) J Phys Chem A 108:9331CrossRefGoogle Scholar
  57. 57.
    Hammett LP (1937) J Am Chem Soc 59:96CrossRefGoogle Scholar
  58. 58.
    Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165CrossRefGoogle Scholar
  59. 59.
    Wheeler SE, Houk KN (2008) J Am Chem Soc 130:10854CrossRefGoogle Scholar
  60. 60.
    Romero FA, Hwang I, Boger DL (2006) J Am Chem Soc 128:14004CrossRefGoogle Scholar
  61. 61.
    Zdilla MJ, Dexheimer JL, Abu-Omar MM (2007) J Am Chem Soc 129:11505CrossRefGoogle Scholar
  62. 62.
    Pohl R, Anzenbacher P Jr (2003) Org Lett 5:2769CrossRefGoogle Scholar
  63. 63.
    Pohl R, Montes VA, Shinar J, Anzenbacher P Jr (2004) J Org Chem 69:1723CrossRefGoogle Scholar
  64. 64.
    Pan Y, Fu Y, Liu S, Yu H, Gao Y, Guo Q, Yu S (2006) J Phys Chem A 110:7316CrossRefGoogle Scholar
  65. 65.
    Zhang X, Wang C-J, Liu L-H, Jiang Y-B (2002) J Phys Chem B 106:12432CrossRefGoogle Scholar
  66. 66.
    Fayet G, Joubert L, Rotureau P, Adamo C (2008) J Phys Chem A 112:4054CrossRefGoogle Scholar
  67. 67.
    Cleij TJ, King JK, Jenneskens LW (2000) Macromolecules 33:89CrossRefGoogle Scholar
  68. 68.
    Jacquemin D, Champagne B, André J-M (1996) Synth Met 80:205CrossRefGoogle Scholar
  69. 69.
    Sugiyama K, Yoshimura D, Miyamae T, Miyazaki T, Ishii H, Ouchi Y, Seki K (1998) J Appl Phys 83:4928CrossRefGoogle Scholar
  70. 70.
    Jena NR, Mishra PC (2005) J Phys Chem B 109:14205CrossRefGoogle Scholar
  71. 71.
    Kasha M, Heldt J, Gormin D (1995) J Phys Chem 99:7281CrossRefGoogle Scholar
  72. 72.
    Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669CrossRefGoogle Scholar
  73. 73.
    Cossi M, Barone V (2001) J Chem Phys 115:4708CrossRefGoogle Scholar
  74. 74.
    Aquino AJA, Lischka H, Hattig C (2005) J Phys Chem A 109:3201CrossRefGoogle Scholar
  75. 75.
    Joachain CJ, Brandsen BH (1983) Physics of atoms and molecules. Longman, LondonGoogle Scholar
  76. 76.
    Köse ME, Mitchell WJ, Kopidakis N, Chang CH, Shaheen SE, Kim K, Rumbles G (2007) J Am Chem Soc 129:14257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Faculty of ChemistryNortheast Normal UniversityChangchunChina
  2. 2.Department of ChemistryChifeng UniversityChifengChina

Personalised recommendations