Skip to main content
Log in

Rationalizing perhydrolase activity of aryl-esterase and subtilisin Carlsberg mutants by molecular dynamics simulations of the second tetrahedral intermediate state

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The perhydrolysis reaction in hydrolases is an important example of catalytic promiscuity and has many potential industrial applications. The mechanisms of perhydrolase activity of a subtilisin Carlsberg mutant and of an aryl-esterase mutant have been investigated using classical molecular dynamics simulations of the second tetrahedral intermediate (TI) state. The simulations demonstrated that hydrogen bonding between the second TI of the perhydrolysis reaction is possible in the mutants but not wild type. The stabilization by hydrogen bonds was specific for the perhydrolysis intermediate and either no hydrogen bonding or only weakened hydrogen bonding to the second TI state of the hydrolysis reaction was observed. Furthermore, a significant hindrance to the formation of the catalytically important hydrogen bond between His64 and Ser221 in the catalytic triad by competing hydrogen bonds was found for the subtilisin mutant but not wild type enzyme in case of the hydrolysis intermediate. The opposite was observed in case of the perhydrolysis intermediate. The result offers a qualitative explanation for the overall reduced hydrolysis activity of the subtilisin mutant. In addition, the simulations also explain qualitatively the perhydrolysis activity of the enzyme variants and may be helpful for designing enzyme mutants with further improved perhydrolysis activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Polgar L (1971) Transformation of a serine protease of Aspergillus oryzae into a thiol-enzyme. Acta Biochim Biophys Acad Sci Hung 5:53–55

    Google Scholar 

  2. O’Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzymatic activity. Chem Biol 6:R91–R105

    Article  Google Scholar 

  3. Carboni-Oerlemans C, Dominguez de MP, Tuin B, Bargeman G, van der Meer A, van Germert R (2005) Hydrolase-catalysed synthesis of peroxycarboxylic acids: biocatalytic promiscuity for practical applications. J Biotech 126:140–151

    Google Scholar 

  4. Björkling F, Frykman H, Godtfredsen SE, Kirk O (1992) Lipase catalyzed synthesis of peroxycarboxylic acids and lipase mediated oxidations. Tetrahedron 48:4587–4592

    Article  Google Scholar 

  5. Kirk O, Christensen MW, Damhus T, Godtfredsen SE (1994) Enzyme-catalyzed degradation and formation of percarboxylic acids. Biocatalysis 11:65–77

    Article  CAS  Google Scholar 

  6. Zacks A, Klibanov AM (1985) Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci USA 82:3192–3196

    Article  Google Scholar 

  7. Bernhardt P, Hult K, Kazlauskas RJ (2005) Molecular basis of perhydrolase activity in serine hydrolases. Angew Chem Int Ed 44:2742–2746

    Article  CAS  Google Scholar 

  8. Franssen MCR, van der Plas HC (1992) Haloperoxidases—their properties and their use in organic synthesis. Adv Appl Microbiol 37:41–99

    Article  CAS  Google Scholar 

  9. Butler A, Walker JV (1993) Marine haloperoxidases. Chem Rev 93:1937–1944

    Article  CAS  Google Scholar 

  10. Picard M, Gross J, Luebbert E, Toelzer S, Krauss S, van Pee KH, Berkessel A (1997) Metal-free bacterial haloperoxidases as unusual hydrolases: activation of H2O2 by the formation of peracetic acid. Angew Chem Int Ed 36:1196–1199

    Article  CAS  Google Scholar 

  11. Hecht HJ, Sobek H, Haag T, Pfeiffer O, van Pee KH (1994) The metal-ion-free oxidoreductase from streptomyces aureofaciens has an α/β hydrolase fold. Nat Struct Biol 1:532–537

    Article  CAS  Google Scholar 

  12. Pelletier I, Altenbuchner J, Mattes R (1995) A catalytic triad is required by the non-heme haloperoxidases to perform halogenation. Biochim Biophys Acta, Prot Struct Mol Enzymol 1250:149–157

    Article  Google Scholar 

  13. Pelletier I, Altenbuchner J (1995) A bacterial esterase is homologous with non-heme haloperoxidases and displays brominating activity. Microbiology 141:459–468

    Article  CAS  Google Scholar 

  14. Kirk O, Conrad LS (1999) Metal-free haloperoxidases: fact or artifact? Angew Chem Int Ed 38:977–979

    Article  CAS  Google Scholar 

  15. Cheeseman JD, Tocilj A, Park S, Schrag JD, Kazlauskas RJ (2004) Structure of an aryl esterase from Pseudomonas fluorescens. Acta Cryst Sect 60:1237–1243

    Google Scholar 

  16. Wieland S, Polanyi-Bald L, Prueser I, Stehr R, Maurer KH (2005) Subtilisin variants with improved perhydrolase activity. USPTO 424070140

  17. Fitzpatrick PA, Ringe D, Klibanov AM (1994) X-ray crystal structure of cross-linked subtilisin Carlsberg in water vs. acetonitrile. Biochem Biophys Res Commun 198:675–681

    Article  CAS  Google Scholar 

  18. Stoll VS, Eger BT, Hynes RC, Martichonok V, Jones JB, Pai EF (1998) Differences in binding modes of enantiomers of 1-acetamido boronic acid based protease inhibitors: crystal structures of gamma-chymotrypsin and subtilisin Carlsberg complexes. Biochemistry 37:451–462

    Article  CAS  Google Scholar 

  19. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  20. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  21. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) A point-charge force field for molecular mechanics simulations of proteins. J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CT

  23. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for determining atom-centered charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  24. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of general Amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  25. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  26. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  27. Wang JH (1970) Directional character of proton transfer in enzyme catalysis. Proc Natl Acad Sci USA 66:874–881

    Article  CAS  Google Scholar 

  28. Satterthwait AC, Jencks WP (1974) The mechanism of the aminolysis of acetate esters. J Am Chem Soc 96:7018–7031

    Article  CAS  Google Scholar 

  29. Bachovchin WW, Roberts JD (1978) Nitrogen-15 nuclear magnetic resonance spectroscopy. The state of histidine in the catalytic triad of.alpha.-lytic protease. Implications for the charge-relay mechanism of peptide-bond cleavage by serine proteases. J Am Chem Soc 100:8041–8047

    Article  CAS  Google Scholar 

  30. Emsley J (1980) Very strong hydrogen bonding. Chem Soc Rev 9:91–124

    Article  CAS  Google Scholar 

  31. Bachovchin WW (1985) Confirmation of the assignment of the low-field proton resonance of serine proteases by using specifically nitrogen-15 labeled enzyme. Proc Natl Acad Sci USA 82:7948–7951

    Article  CAS  Google Scholar 

  32. Fujinaga M, Delbaere LTJ, Brayer GD, James MNG (1985) Refined structure of alpha-lytic protease at 1.7 A resolution. Analysis of hydrogen bonding and solvent structure. J Mol Biol 183:479–502

    Article  Google Scholar 

  33. Sumi H, Ulstrup J (1988) Dynamics of protein conformational fluctuation in enzyme catalysis with special attention to proton transfers in serine proteinases. Biochim Biophys Acta 955:26–42

    CAS  Google Scholar 

  34. Ash EL, Sudmeier JL, Day RM, Vincent M, Torchilin EV, Haddad KC, Bradshaw EM, Sanford DG, Bachovchin WW (2000) Unusual 1H NMR chemical shifts support (His) C(epsilon) 1…O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis. Proc Natl Acad Sci USA 97:10371–10376

    Article  CAS  Google Scholar 

  35. Otte N, Pocola M, Thiel W (2008) Force-field parameters for the simulation of tetrahedral intermediates of serine hydrolases. J Comput Chem 30:154–162

    Article  Google Scholar 

  36. Topf M, Varnai P, Richards WG (2002) Ab initio QM/MM dynamics simulation of the tetrahedral intermediate of serine proteases: Insights into the active site hydrogen-bonding network. J Am Chem Soc 124:14780–14788

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed using the computational resources of the CLAMV (Computer Laboratories for Animation, Modeling and Visualization) at Jacobs University Bremen and supercomputer resources of the EMSL (Environmental Molecular Science Laboratories) at the PNNL (Pacific Northwest National Laboratories).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zacharias.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, W., Vojcic, L., Despotovic, D. et al. Rationalizing perhydrolase activity of aryl-esterase and subtilisin Carlsberg mutants by molecular dynamics simulations of the second tetrahedral intermediate state. Theor Chem Acc 125, 375–386 (2010). https://doi.org/10.1007/s00214-009-0611-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0611-3

Keywords

Navigation