Skip to main content
Log in

Radical reaction HCNO + 3NH: a mechanistic study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The complex triplet potential energy surface for the reaction of HCNO with NH is investigated at the G3B3 level using the B3LYP/6-311++G(d,p), and QCISD/6-311++G(d,p) geometries. Various possible isomerization and dissociation pathways are probed. The initial association between HCNO and NH is found to be carbon to nitrogen attack leading to HNCHNO 2a, which can convert to 2b, 2c, and 2d. Subsequently, 1,4-H-shift of 2a to form NCHNOH 3a followed by dissociation to P 2 (1HCN + 3HON) is the most feasible pathway. Much less competitively, 2d undergoes successive 1,3-H-shift and C-N cleavage to form HNCNOH 8b, and then to product P 3 (1HNC + 3HON), the second feasible pathway. 8b can alternatively isomerize to 8c followed by N–O bond rupture to generate P 6 (2OH + 2HNCN), the lesser followed feasible pathway. In addition, 2b takes continuously 1,3- and 1,2-H-shift to form NC(H)NHO 6a, then to ONHCNH 7a which can convert to 7b. Eventually, 7b may take C-N bond fission to produce P 5 (1HNC + 3HNO), the least feasible pathway. The present paper may be helpful for future experimental identification of the product distributions for the title reaction, and may be helpful to deeply understand the mechanism of the title reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miller JA, Klippenstein SJ, Glarborg P (2003) Combust Flame 135:357. doi:10.1016/j.combustflame.2003.07.002

    Article  CAS  Google Scholar 

  2. Zhang WC, Du BN, Feng CJ (2004) J Mol Struct Theochem 679:121. doi:10.1016/j.theochem.2004.04.012

    Article  CAS  Google Scholar 

  3. Eshchenko G, Kocher T, Kerst C, Temps F (2007) Chem Phys Lett 356:181. doi:10.1016/S0009-2614(02)00387-1

    Article  Google Scholar 

  4. Bauerle S, Klatt M, Wagner HG, Bunsen-Ges B (1995) Phys Chem 99:97

    CAS  Google Scholar 

  5. Grussdorf J, Temps F, Wagner HG, Bunsen-Ges B (1997) Phys Chem 101:34

    Google Scholar 

  6. Meyer JP, Hershberger JF (2005) J Phys Chem B 109:8363. doi:10.1021/jp040503h

    Article  CAS  Google Scholar 

  7. Vereecken L, Sumathy R, Carl SA, Peeters J (2001) Chem Phys Lett 344:400. doi:10.1016/S0009-2614(01)00818-1

    Article  CAS  Google Scholar 

  8. Tokmakov IV, Moskaleva LV, Paschenko DV, Lin MC (2003) J Phys Chem A 107:1066. doi:10.1021/jp022024t

    Article  CAS  Google Scholar 

  9. Rim KT, Hershberger JF (2000) J Phys Chem A 104:293. doi:10.1021/jp9922209

    Article  CAS  Google Scholar 

  10. Eickhoff U, Temps F (1999) Phys Chem Chem Phys 1:243. doi:10.1039/a807258b

    Article  CAS  Google Scholar 

  11. Nguyen MT, Boullart W, Peeters J (1994) J Phys Chem 98:8030. doi:10.1021/j100084a019

    Article  CAS  Google Scholar 

  12. Schulze G, Koja O, Winnewisser BP, Winnewisser M (2000) J Mol Struct 517:307. doi:10.1016/S0022-2860(99)00260-4

    Article  Google Scholar 

  13. Albert S, Albert KK, Winnewisser M, Winnewisser BP (2001) J Mol Struct 599:347. doi:10.1016/S0022-2860(01)00823-7

    Article  CAS  Google Scholar 

  14. Feng WH, Hershberger JF (2008) Chem Phys Lett 457:307. doi:10.1016/j.cplett.2008.04.012

    Article  CAS  Google Scholar 

  15. Feng WH, Hershberger JF (2007) J Phys Chem A 111:10654. doi:10.1021/jp075636s

    Article  CAS  Google Scholar 

  16. Miller JA, Durant P, Glarborg P (1998) Proc Combust Inst 27:235

    Google Scholar 

  17. Wang S, Yu JK, Ding DJ, Sun CC (2007) Theor Chem Acc 118:337. doi:10.1007/s00214-007-0262-1

    Article  CAS  Google Scholar 

  18. Feng WH, Meyer JP, Hershberger JF (2006) J Phys Chem A 110:4458. doi:10.1021/jp058305t

    Article  CAS  Google Scholar 

  19. Li BT, Zhang J, Wu HS, Sun GD (2007) J Phys Chem A 111:7211. doi:10.1021/jp072637b

    Article  CAS  Google Scholar 

  20. Feng WH, Hershberger JF (2007) J Phys Chem A 111:3831. doi:10.1021/jp066036g

    Article  CAS  Google Scholar 

  21. Zhang WC, Du BN, Feng CJ (2007) Chem Phys Lett 442:1. doi:10.1016/j.cplett.2007.05.041

    Article  CAS  Google Scholar 

  22. Feng WH, Hershberger JF (2006) J Phys Chem A 110:12184. doi:10.1021/jp0650073

    Article  CAS  Google Scholar 

  23. Pang JL, Xie HB, Zhang SW, Ding YH, Tang AQ (2008) J Phys Chem A 112:5251. doi:10.1021/jp709700u

    Article  CAS  Google Scholar 

  24. Wang S, Yu JK, Ding DJ, Sun CC (2008) Chem J Chin Univ Chin 29:365

    CAS  Google Scholar 

  25. Haynes BS (1977) Combust Flame 28:81. doi:10.1016/0010-2180(77)90010-4

    Article  CAS  Google Scholar 

  26. Haynes BS (1977) Combust Flame 28:113. doi:10.1016/0010-2180(77)90017-7

    Article  CAS  Google Scholar 

  27. Lyon R (1987) En iron. Sci Technol 21:231. doi:10.1021/es00157a002

    Article  CAS  Google Scholar 

  28. Radford HE, Litvak MM (1975) Chem Phys Lett 34:561. doi:10.1016/0009-2614(75)85562-X

    Article  CAS  Google Scholar 

  29. Wayne FD, Radford HE (1976) Mol Phys 32:1407. doi:10.1080/00268977600102771

    Article  CAS  Google Scholar 

  30. Bernath PF, Amano T (1982) J Mol Spectrosc 95:359. doi:10.1016/0022-2852(82)90135-7

    Article  CAS  Google Scholar 

  31. Brazier CR, Ram RS, Bernath PF (1986) J Mol Spectrosc 120:381. doi:10.1016/0022-2852(86)90012-3

    Article  CAS  Google Scholar 

  32. Adam L, Hack W, Zhu H, Qu ZW, Schinke R (2005) J Chem Phys 122:114301. doi:10.1063/1.1862615

    Article  CAS  Google Scholar 

  33. Takahashi K, Takayanagi K (2007) J Mol Struct Theochem 817:153. doi:10.1016/j.theochem.2007.04.032

    Article  CAS  Google Scholar 

  34. Takahashi K, Takayanagi T (2006) Chem Phys Lett 429:399. doi:10.1016/j.cplett.2006.08.109

    Article  CAS  Google Scholar 

  35. Xu ZF, Sun JZ (1998) J Phys Chem A 102:1194. doi:10.1021/jp972959n

    Article  CAS  Google Scholar 

  36. Xu ZF, Li SM, Yu YX, Li ZS, Sun CC (1999) J Phys Chem A 103:4910. doi:10.1021/jp984499j

    Article  CAS  Google Scholar 

  37. Du B, Zhang W, Mu L, Feng C (2007) J Mol Struct Theochem 816:21. doi:10.1016/j.theochem.2007.03.034

    Article  CAS  Google Scholar 

  38. Redondo P, Pauzat F, Ellinger Y (2006) Planet Space Sci 54:181. doi:10.1016/j.pss.2005.10.008

    Article  CAS  Google Scholar 

  39. Mackie J, Bacskay GB (2005) J Phys Chem A 109:11967. doi:10.1021/jp0544585

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scusera GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.6. Gaussian, Inc., Pittsburgh

    Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision B.03. Gaussian, Inc., Wallingford

    Google Scholar 

  42. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JAJ (1998) Chem Phys 109:7764

    CAS  Google Scholar 

  43. Boboul AG, Curtiss LA, Redfern PC, Raghavachari KJ (1999) Chem Phys 110:7650

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 20773048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-ri Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Liu, Hl., Sun, Yb. et al. Radical reaction HCNO + 3NH: a mechanistic study. Theor Chem Acc 124, 123–137 (2009). https://doi.org/10.1007/s00214-009-0591-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0591-3

Keywords

Navigation