Theoretical Chemistry Accounts

, Volume 125, Issue 3–6, pp 345–352 | Cite as

The mechanisms of excited states in enzymes

  • F. N. R. Petersen
  • H. G. BohrEmail author
Regular Article


Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.


Barrier heights Excited states Enzyme kinetics 



FNR Petersen would like to thank the Danish Technical University (DTU) for his PhD scholarship at the Quantum Protein (QuP) Centre in the Department of Physics. HG Bohr would like to thank the Danish National Research Foundation (DG) for funding QuP from 2001 to 2009. The authors wish to thank Per Jr. Griesen and Dr. Karl J. Jalkanen for their technical assistance in preparing the manuscript and insightful scientific discussions.


  1. 1.
    Creighton TE (1992) Proteins: structure and molecular properties. W. H. Freeman, San FranciscoGoogle Scholar
  2. 2.
    Wigner E (1938) The transition state method. Trans Faraday Soc 34:29–41CrossRefGoogle Scholar
  3. 3.
    Rice BM, Pai SV, Chabalowski CF (1998) Performance of density functioal theory on the potential-energy surface of the h + ocs system. J Phys Chem A 102:6950–6956CrossRefGoogle Scholar
  4. 4.
    Frenkel D, Smit BM-A, Chabalowski CF (2002) Molecular simulation. Academic Press, San DiegoGoogle Scholar
  5. 5.
    Vault DD (1984) Quantum mechanical tunneling in biosystems. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Kohen A, KPJ (1998) Enzyme catalysis: beyond classical paradigms. Acc Chem Res 31:397–404CrossRefGoogle Scholar
  7. 7.
    Bohr HG, Malik FB (2007) Evidence of auger-like transitions in repair stage of ultraviolet-mutated DNA. Phys Lett A 362:460–462CrossRefGoogle Scholar
  8. 8.
    Bohr H, Nielsen HB (2005) Excited electronic state processes in large bio-molecules, modus operandi. In: Belkacem M, Dinh PM (eds) Condensed matter theories, vol 19, chap 8. Nova, New York, pp 93–104Google Scholar
  9. 9.
    Govindjee, Rabinowitch E (1960) Two forms of chlorophyll a in vivo with distinct photochemical functions. Science 132:355–356CrossRefGoogle Scholar
  10. 10.
    Aubert C, Vos MH, Mathis P, Eker AP, Brettel K (2000) Intraprotein radical transfer during photoactivation of DNA photolyase. Nature 405:586–590CrossRefGoogle Scholar
  11. 11.
    Szabo I, Bergantino E, Giacometti GM (2005) Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. EMBO Rep 6:629–634CrossRefGoogle Scholar
  12. 12.
    Tresadern G, Nunez S, Faulder PF, Wang H, Hillier IH, Burton NA (2003) Direct dynamics calculations of reaction rate and kinetic isotope effects in enzyme catalysed reactions. Faraday Discuss 122:(no. NIL)223–42; discussion 269–82Google Scholar
  13. 13.
    Prokhorenko VI, Nagy AM, Waschuk SA, Brown LS, Birge RR, Miller RJD (2006) Coherent control of retinal isomerization in bacteriorhodopsin. Science 313:1257–1261CrossRefGoogle Scholar
  14. 14.
    Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134CrossRefGoogle Scholar
  15. 15.
    Paldus J (1974) Group theoretical approach to the configuration interaction and perturbation theory calculations for atomic and molecular systems. J Chem Phys 61:5321–5330CrossRefGoogle Scholar
  16. 16.
    Cizek J (1966) On the correlation problem in atomic and molecular systems. calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods. J Chem Phys 45:4256–4266CrossRefGoogle Scholar
  17. 17.
    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000CrossRefGoogle Scholar
  18. 18.
    Bartlett RJ (1989) Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry. J Phys Chem 93:1697–1708CrossRefGoogle Scholar
  19. 19.
    Friesner RA (2005) Ab initio quantum chemistry: methodology and applications. Proc Natl Acad Sci USA 102:6648–6653CrossRefGoogle Scholar
  20. 20.
    Venkatnathan A, Szilva AB, Walter D, Gdanitz RJ, Carter EA (2004) Size extensive modification of local multireference configuration interaction. J Chem Phys 120:1693–1704CrossRefGoogle Scholar
  21. 21.
    Kuriyama K, Providencia C, da Providencia J, Tsue Y, Yamamura M (2001) Deformed boson scheme in time-dependent variational method. I. Prog Theor Phys 106:751–763CrossRefGoogle Scholar
  22. 22.
    Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excited energies of large molecules. J Chem Phys 109:8218–8224CrossRefGoogle Scholar
  23. 23.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman MA, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JC, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., WallingfordGoogle Scholar
  24. 24.
    Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162:165–169CrossRefGoogle Scholar
  25. 25.
    Lischkam H, Shepard R, Pitzer RM, Shavitt I, Dallos M, Muller T, Szalay PG, Seth M, Kedziora GS (2001) High-level multireference methods in the quantum-chemistry program system columbus: analysis mr-cisd and mr-aqcc gradient and mr-aqcc-lrt for excited states, guga spin-orbit ci and parallel ci density. Phys Chem Chem Phys 3:664–673CrossRefGoogle Scholar
  26. 26.
    Andersson K, Blomberg RA, Fulscher MP, Karlstrom G, Lindh R, Malmqvist PA, Neogrady O, Olsen J, Roos BO, Sadlej AJ, Schutz M, Seijo L, Serrano-Andres L, Siegbahn PEM, Widmark PO (1997) Molcas, version 4.0. Lund University, SwedenGoogle Scholar
  27. 27.
    Weber S (2005) Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. Biochimica et Biophysica Acta (Bioenergetics) 1707:1–23CrossRefGoogle Scholar
  28. 28.
    Srinivasen R, Feenstra JS, Park ST, Xu S, Zewail AH (2005) Dark structures in molecular radiationless transitions determined by ultrafast diffraction. Science 307:558–563CrossRefGoogle Scholar
  29. 29.
    Greer LFr, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17:43–74CrossRefGoogle Scholar
  30. 30.
    Hastings JW (1983) Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. J Mol Evol 19(5):309–321CrossRefGoogle Scholar
  31. 31.
    Dementieva EI, Kossobokova OV, Ugarova NN (2001) Quenching of tryptophan fluorescence of firefly luciferase by substrates. J Photochem Photobiol B 60:7–11CrossRefGoogle Scholar
  32. 32.
    Koo JA, Schmidt SP, Schuster GB (1978) Bioluminescence of the firefly: key steps in the formation of the electronically excited state for model systems. Proc Natl Acad Sci USA 75:30–33CrossRefGoogle Scholar
  33. 33.
    Yamaguchi Y, Shirai Y, Matsubara T, Sanse K, Kuriyama M, Oshiro N, Yoshino K-i, Yonezawa K, Ono Y, Saito N (2006) Phosphorylation and up-regulation of diacylglycerol kinase gamma via its interaction with protein kinase C gamma. J Biol Chem 281:31627–31637CrossRefGoogle Scholar
  34. 34.
    Fujitani N, Kanagawa M, Aizawa T, Ohkubo T, Kaya S, Demura M, Kawano K, Nishimura S, Taniguchi K, Nitta K (2003) Structure determination and conformational change induced by tyrosine phosphorylation of the N-terminal domain of the alpha-chain of pig gastric H+/K+-ATPase. Biochem Biophys Res Commun 300:223–229CrossRefGoogle Scholar
  35. 35.
    Sprang SR, Acharya KR, Goldsmith EJ, Stuart DI, Varvill K, Fletterick RJ, Madsen NB, Johnson LN (1988) Structural changes in glycogen phosphorylase induced by phosphorylation. Nature 336:215–221CrossRefGoogle Scholar
  36. 36.
    Dexter DL (1953) A theory of sentized luminescence in solids. J Chem Phys 21:836–850CrossRefGoogle Scholar
  37. 37.
    Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys (Leipzig) 2:55–75Google Scholar
  38. 38.
    Mukamel S (2000) Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu Rev Phys Chem 51:691–729CrossRefGoogle Scholar
  39. 39.
    Frey PA (2001) Radical mechanisms of enzymatic catalysis. Annu Rev Biochem 70:121–148CrossRefGoogle Scholar
  40. 40.
    Ichiro O (2001) Photosensitization of porphyrins and phthalocyanines, 1st edn. Gordon and Breach Science, New YorkGoogle Scholar
  41. 41.
    Diner BA (2001) Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation. Biochim Biophys Acta 1503:147–163CrossRefGoogle Scholar
  42. 42.
    Cukier RI, Nocera DG (1998) Proton-coupled electron transfer. Annu Rev Phys Chem 49:337–369CrossRefGoogle Scholar
  43. 43.
    Hammes-Schiffer S, Tully J (1994) Proton transfer in solution: Molecular dynamics with quantum transitions. J Chem Phys 101:4657–4667CrossRefGoogle Scholar
  44. 44.
    Hammes-Schiffer S (1998) Mixed quantum/classical dynamics of hydrogen transfer reactions. J Phys Chem A 102:10443–10454CrossRefGoogle Scholar
  45. 45.
    Webb SP, Hammes-Schiffer S (2000) Fourier grid hamiltonian multiconfigurational self-consistent field: a method to calculate multidimensional hydrogen vibrational wavefunctions. J Chem Phys 113:5514–5227CrossRefGoogle Scholar
  46. 46.
    Hopfield JJ (1974) Electron transfer between biological molecules by thermally activated tunneling. PNAS 71:3640–3644CrossRefGoogle Scholar
  47. 47.
    Jortner J (1976) Temperature dependent activation energy for electron transfer between biological molecules. J Chem Phys 64:4860–4867CrossRefGoogle Scholar
  48. 48.
    Dogonadze RR, Kuznetsov AM, Ulstrup J (1977) Conformational dynamics in biological electron and atom transfer reactions. J Theor Biol 69:239–263CrossRefGoogle Scholar
  49. 49.
    Tully J (1990) Molecular dynamics with electronic transitions. J Chem Phys 93:1061–1071CrossRefGoogle Scholar
  50. 50.
    Theorell H (1967) Function and structure of liver alcohol dehydrogenase. Harvey Lect 61:17–41Google Scholar
  51. 51.
    Billeter SR, Webb SP, Iordanov I, Agarwal PK, Hammes-Schiffer S (2001) Hybrid approach for including electronic and nuclear quantum effects in molecular dynamics simulations of hydrogen transfer reactions in enzymes. J Chem Phys 114:6925–6936CrossRefGoogle Scholar
  52. 52.
    Agarwal PK, Billeter SR, Hammes-Schiffer S (2002) Nuclear quantum effects and enzyme dynamics in dihydrofolate reductase catalysis. J Phys Chem 106:3283–3293Google Scholar
  53. 53.
    Bohr H, Greisen PJ, Malic B (2008) Excited state processes in photosynthetic molecules. Intern J Mod Phys B 22:4617–4626CrossRefGoogle Scholar
  54. 54.
    Vengris M, van der Horst MA, Zgrablic G, van Stokkum IHM, Haacke S, Chergui M, Hellingwerf KJ, van Grondelle R, Larsen DS (2004) Contrasting the excited-state dynamics of the photoactive yellow protein chromophore: protein versus solvent environments. Biophys J 87:1848–1857CrossRefGoogle Scholar
  55. 55.
    Bohr HG, Jalkanen KJ, Malik FB (2005) Electronic pathways in photoactivated repair of UV-mutated DNA. Mod Phys Lett B 19:473–487CrossRefGoogle Scholar
  56. 56.
    Jalkanen KJ, Jürgensen VW, Claussen A, Rahim A, Jensen GM, Wade RC, Nardi F, Jung C, Degtyarenko IM, Nieminen RM, Herrmann F, Knapp-Mohammady M, Niehaus TA, Frimand K, Suhai S (2006) Use of vibrational spectroscopy to study protein and DNA structure, hydration, and binding of biomolecules: a combined theoretical and experimental approach. Int J Quantum Chem 106:1160–1198CrossRefGoogle Scholar
  57. 57.
    Mees A, Klar T, Gnau P, Hennecke U, Eker APM, Carell T, Essen L-O (2004) Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 306:1789–1793CrossRefGoogle Scholar
  58. 58.
    Heelis PF (1997) Electronic energy in DNA photolyase: a molecular orbital study. J Photochem Photobiol B 38:31–34CrossRefGoogle Scholar
  59. 59.
    Petersen FN, Jensen MO, Nielsen CH (2005) Interfacial tryptophan residues: a role for the cation–pi effect?. Biophys J 89:3985–3996CrossRefGoogle Scholar
  60. 60.
    Burghardt TP, Juranic N, Macura S, Ajtai K (2002) Cation-pi interaction in a folded polypeptide. Biopolymers 63:261–272CrossRefGoogle Scholar
  61. 61.
    Shiraishi Y, Ishizumi K, Nishimura G, Takayuki H (2007) Effects of metal cation coordination on fluorescence properties of a diethylenetriamine bearing two end pyrene fragments. J Phys Chem B 111:8812–8822CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Physics, Quantum Protein (QuP) CenterDanish Technical University, DTUKgs. LyngbyDenmark

Personalised recommendations