Skip to main content
Log in

Mechanistic and dual-level direct dynamics studies on the reaction Cl + CH2FCl

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Theoretical investigations are carried out on the reaction Cl + CH2FCl by means of direct dynamics method. The minimum energy path (MEP) is obtained at the MP2/6-311G(d, p) level. The energetic information is further improved by single-point energy calculations using QCISD(T)/6-311++G(d, p) method. The kinetics of this reaction are calculated by canonical variational transition state theory incorporating with the small-curvature tunneling correction over a wide temperature range of 220–3,000 K, and rate constant expression are found to be k(T) = 1.48 × 10−17 T 2.04exp(−913.91/T). For the title reaction, H-abstraction reaction channel is the major channel at the lower temperatures. At higher temperatures, the contribution of Cl-abstraction reaction channel should be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tuck R, Plumb A, Condon E (1990) Geophys Res Lett 17:313. doi:10.1029/GL017i004p00313

    Article  Google Scholar 

  2. Rosswall T (1991) Environ Sci Technol 25:567. doi:10.1021/es00016a001

    Article  CAS  Google Scholar 

  3. Atkinson R (1986) Chem Rev 86:69. doi:10.1021/cr00071a004

    Article  CAS  Google Scholar 

  4. Atkinson R (1994) J Phys Chem Ref Data Monograph 2:1–216

    Google Scholar 

  5. Manzer L (1990) Science 249:31. doi:10.1126/science.249.4964.31

    Article  CAS  Google Scholar 

  6. Manning RG, Kurylo MJ (1977) J Phys Chem 81:291. doi:10.1021/j100519a003

    Article  CAS  Google Scholar 

  7. Senkan SM (1988) Environ Sci Technol 22:368. doi:10.1021/es00169a600

    Article  Google Scholar 

  8. Bryukov MG, Slagle IR, Knyazev VD (2001) J Phys Chem A 105:6900. doi:10.1021/jp0106505

    Article  CAS  Google Scholar 

  9. Zhang H, Zhang GL, Wang L, Liu B, Yu XY, Li ZS (2006) Chem Phys Lett 432:6. doi:10.1016/j.cplett.2006.10.024

    Article  CAS  Google Scholar 

  10. Knyazev VD (2003) J Phys Chem A 107:11082. doi:10.1021/jp036281p

    Article  CAS  Google Scholar 

  11. Li S, Li ZS, Liu JY, Sun CC (2004) J Comput Chem 25:72. doi:10.1002/jcc.10305

    Article  CAS  Google Scholar 

  12. Li QS, Wang CY (2002) Phys Chem Chem Phys 4:4386. doi:10.1039/b206133n

    Article  CAS  Google Scholar 

  13. Sun H, He HQ, Pan YR, Pan XM, Li ZS, Wang RS (2008) Chem Phys Lett 450:186. doi:10.1016/j.cplett.2007.11.003

    Article  CAS  Google Scholar 

  14. Zhang H, Wu JY, Li ZS, Liu JY, Li S, Sun CC (2005) J Comput Chem 26:1421. doi:10.1002/jcc.20283

    Article  CAS  Google Scholar 

  15. Wang L, Liu JY, Wan SQ, Li ZS (2008) Chem Phys Lett 455:20. doi:10.1016/j.cplett.2008.02.006

    Article  CAS  Google Scholar 

  16. Tschuikow-Roux E, Faraji F, Paddison S, Niedzielski J, Miyokawa K (1988) J Phys Chem 92:1488. doi:10.1021/j100317a023

    Article  CAS  Google Scholar 

  17. Jourdain GL, Poulet G, Barassin J, LeBras G, Combourieu J (1977) J Pollut Atmos 75:256

    CAS  Google Scholar 

  18. Tuazon EC, Atkinson R, Corchnoy SB (1992) Int J Chem Kinet 24:639. doi:10.1002/kin.550240704

    Article  CAS  Google Scholar 

  19. Senkan SM, Quam D (1992) J Phys Chem 96:10837. doi:10.1021/j100205a044

    Article  CAS  Google Scholar 

  20. Wallington TJ, Hurley MD, Schneider WF, Sehested J, Nielsen OJ (1994) Chem Phys Lett 218:34. doi:10.1016/0009-2614(93)E1466-T

    Article  CAS  Google Scholar 

  21. Atkinson R, Baulch DL, Cox RA et al (1997) J Phys Chem Ref Data 26:521

    CAS  Google Scholar 

  22. Bell RL, Truong TN (1994) J Chem Phys 101:10442. doi:10.1063/1.467862

    Article  CAS  Google Scholar 

  23. Truong TN, Duncan WT, Bell RL (1996) In: Chemical applications of density functional theory. American Chemical Society, Washington, DC, p 85

  24. Truhlar DG (1995) In: Heidrich D (ed) The reaction path in chemistry: current approaches and perspectives. Kluwer, Dordrecht, p 229

    Google Scholar 

  25. Corchado JC, Espinosa-Garcia J, Hu WP, Rossi I, Truhlar DG (1995) J Phys Chem 99:687. doi:10.1021/j100002a037

    Article  CAS  Google Scholar 

  26. Hu WP, Truhlar DG (1996) J Am Chem Soc 118:860. doi:10.1021/ja952464g

    Article  CAS  Google Scholar 

  27. Truhlar DG, Garrett BC (1980) Acc Chem Res 13:440. doi:10.1021/ar50156a002

    Article  CAS  Google Scholar 

  28. Truhlar DG, Isaacson AD, Garrett BC (1985) In: Baer M (ed) The theory of chemical reaction dynamics, vol 4. CRC Press, Boca Raton, p 65

    Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB et al (2004) Gaussian 03, revision C.02. Gaussian, Inc., Wallingford

    Google Scholar 

  30. Duncan WT, Truong TN (1995) J Chem Phys 103:9642. doi:10.1063/1.470731

    Article  CAS  Google Scholar 

  31. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154. doi:10.1063/1.456010

    Article  CAS  Google Scholar 

  32. Corchado JC, Chuang YY, Fast PL et al (2002) POLYRATE version 9.1. Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, MN

    Google Scholar 

  33. Chuang YY, Corchado JC, Truhlar DG (1990) J Phys Chem A 103:1140. doi:10.1021/jp9842493

    Article  Google Scholar 

  34. Garrett BC, Truhlar DG (1979) J Chem Phys 70:1593. doi:10.1063/1.437698

    Article  CAS  Google Scholar 

  35. Garrett BC, Truhlar DG (1979) J Am Chem Soc 101:4534. doi:10.1021/ja00510a019

    Article  CAS  Google Scholar 

  36. Garrett BC, Truhlar DG, Grev RS, Magnuson AW (1980) J Phys Chem 84:1730. doi:10.1021/j100450a013

    Article  CAS  Google Scholar 

  37. Truhlar DG, Issacson AD, Skodje RT, Garrett BC (1983) J Phys Chem 87:4554. doi:10.1021/j100245a604

    Article  Google Scholar 

  38. Lu DH et al (1992) Comput Phys Commun 71:235. doi:10.1016/0010-4655(92)90012-N

    Article  CAS  Google Scholar 

  39. Liu YP, Lynch GC, Truong TN, Lu DH, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408. doi:10.1021/ja00059a041

    Article  CAS  Google Scholar 

  40. Lide DR (1999) In: CRC Handbook of chemistry and physics, 80th edn. CRC Press, Boca Raton

  41. Huber KP, Herzberg G (1979) In: Molecular spectra and molecular structure IV. Constants of diatomic molecules. Van Nostrand Reinhold Co., New York

  42. Harmony MP, Laurie VW, Ramsay RL, Lovas FJ, Lafferty WJ et al (1979) J Phys Chem Ref Data 8:619

    Article  CAS  Google Scholar 

  43. Chase MW Jr, Davies CA, Downey JR, Fryrip DJ, McDonald RA, Syverud AN JANAF (1985) Thermochemical tables, Suppl 1, vol 14, 3rd edn, Ref Data, pp 1–926

  44. NIST Chemistry WebBook (2005) NIST Standard Reference Database Number 69, June Release (vibrational frequency data compiled by Jacox ME)

  45. NIST Chemistry WebBook (2003) NIST Standard Reference Database Number 69, March Release (date compiled by Huber KP and Herzberg G)

  46. Chase MW Jr (1998) Thermochemical tables NIST-JANAF, 4th edn. J Phys Chem Ref Data, Monograph 9, Suppl 1

  47. Tschuikow-Roux E, Paddison S (1987) Int J Chem Kinet 19:15. doi:10.1002/kin.550190103

    Article  CAS  Google Scholar 

  48. Poutsma JC, Paulino JA, Squires RR (1997) J Phys Chem A 101:5327. doi:10.1021/jp970778f

    Article  CAS  Google Scholar 

  49. Rosenman E, McKee ML (1997) J Am Chem Soc 119:9033. doi:10.1021/ja971185l

    Article  CAS  Google Scholar 

  50. Xiao JF, Li ZS, Ding YH et al (2002) J Phys Chem A 106:320. doi:10.1021/jp013405u

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Donald G. Truhlar for providing POLYRATE 9.1 program. This work is supported by the National Natural Science Foundation of China (No. 20773021), and Training Fund of NENU’S Scientific Innovation Project (NENU-STC07016). We are greatly thankful for the referees’ helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong-Shun Wang or Xiu-Mei Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, XJ., Liu, YJ., Sun, JY. et al. Mechanistic and dual-level direct dynamics studies on the reaction Cl + CH2FCl. Theor Chem Acc 124, 105–113 (2009). https://doi.org/10.1007/s00214-009-0587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0587-z

Keywords

Navigation