Skip to main content
Log in

Hydrogen abstraction from CF3CF2CFH2 and CF3CFHCF2H by OH radicals and Cl atoms: theoretical enthalpies and rate constants

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The hydrogen abstraction reactions of CF3CF2CFH2 and CF3CFHCF2H with OH radicals and Cl atoms have been studied theoretically by a dual-level direct dynamics method. Two stable conformers of CF3CF2CFH2 with C s and C 1 symmetries and all possible abstraction channels for each reaction are all taken into consideration. Optimized geometries and frequencies of all the stationary points and extra points along minimum-energy path (MEP) have been computed at the BB1K/6-31+G(d, p) level of theory. To refine the energy profile of each reaction channel, single point energy calculations have been performed by the BMC-CCSD method. The rate constants are evaluated by canonical variational transition state theory (CVT) with the small-curvature tunneling correction method (SCT) over a wide temperature range of 200–1,000 K. The detailed branching ratios of four reactions are discussed. The good agreement found between our theoretical rate constants and the available experimental data suggests that the present approach could provide a reliable prediction for the CF3CFHCF2H + Cl reaction about which there is little experimental information. The kinetic calculations show that the SCT effect plays an important role in all channels. In addition, in order to further reveal the thermodynamic properties, the enthalpies of formation of the reactants (CF3CF2CFH2 and CF3CFHCF2H) and the product radicals (CF3CF2CFH, CF3CFCF2H, and CF3CFHCF2) are evaluated by applying isodesmic reactions at both BMC-CCSD//BB1K/6-31+G(d, p) and MC-QCISD//BB1K/6-31+G(d, p) levels of theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Garland NL, Medhurst LJ, Nelson HH (1993) J Geophys Res 98:23107. doi:10.1029/93JD02550

    Article  CAS  Google Scholar 

  2. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J, Wallington TJ (2008) Atmos Chem Phys 8:4141

    Article  CAS  Google Scholar 

  3. Sander SP, Ravishankara AR, Golden DM, Kolb CE, Kurylo MJ, Molina MJ, Moortgat GK, Finlayson-Pitts BJ, Wine PH, Huie RE (2006) JPL Publ 06:2

    Google Scholar 

  4. Nelson DD Jr, Zahniser MS, Kolb CE, Magid H (1995) J Phys Chem 99:16301. doi:10.1021/j100044a016

    Article  CAS  Google Scholar 

  5. Hsu K-J, DeMore WB (1995) J Phys Chem 99:1235. doi:10.1021/j100004a025

    Article  CAS  Google Scholar 

  6. Zhang Z, Padmaja S, Saini RD, Huie RE, Kurylo MJ (1994) J Phys Chem 98:4312. doi:10.1021/j100067a017

    Article  CAS  Google Scholar 

  7. Mogelberg TE, Feilberg A, Biessing AMB, Sehested J, Bilde M, Wallington TJ, Nielsen OJ (1995) J Phys Chem 99:17386. doi:10.1021/j100048a013

    Article  CAS  Google Scholar 

  8. Truhlar DG (1995) In: Heidrich D (ed) The reaction path in chemistry: current approaches and perspectives. Kluwer, Dordrecht, pp 229

  9. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771. doi:10.1021/jp953748q

    Article  CAS  Google Scholar 

  10. Hu W-P, Truhlar DG (1996) J Am Chem Soc 118:860. doi:10.1021/ja952464g

    Article  CAS  Google Scholar 

  11. IUPAC http://www.iupac.org/reports/1999/7110minkin/i.html

  12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian Inc., Pittsburgh

  13. Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715. doi:10.1021/jp049908s

    Article  CAS  Google Scholar 

  14. Becke AD (1988) Phys Rev A 38:3098. doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  15. Becke AD (1996) J Chem Phys 104:1040. doi:10.1063/1.470829

    Article  CAS  Google Scholar 

  16. Lynch BJ, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:1643. doi:10.1021/jp045847m

    Article  CAS  Google Scholar 

  17. Chuang YY, Corchado JC, Truhlar DG (1999) J Phys Chem A 103:1140. doi:10.1021/jp9842493

    Article  CAS  Google Scholar 

  18. Corchado JC, Chuang YY, Fast PL, Hu WP, Liu YP, Lynch GC, Nguyen KA, Jackels CF, Ramos AF, Ellingson BA, Lynch BJ, Melissas VS, Villa J, Rossi I, Coitino EL, Pu J, Albu TV (2005) POLYRATE, version 9.3.1. University of Minnesota, Minneapolis

    Google Scholar 

  19. Garrett BC, Truhlar DG (1979) J Chem Phys 70:1593. doi:10.1063/1.437698

    Article  CAS  Google Scholar 

  20. Garrett BC, Truhlar DG (1979) J Am Chem Soc 101:4534. doi:10.1021/ja00510a019

    Article  CAS  Google Scholar 

  21. Garrett BC, Truhlar DG, Grev RS, Magnuson AW (1980) J Phys Chem 84:1730 Erratum: (1983) 87: 4554

    Article  CAS  Google Scholar 

  22. Truhlar DG, Garrett BC (1980) Acc Chem Res 13:440. doi:10.1021/ar50156a002

    Article  CAS  Google Scholar 

  23. Truhlar DG, Isaacson AD, Garrett BC (1985) Generalized transition state theory. In: Baer M (ed) The theory of chemical reaction dynamics, vol 4. CRC Press, Boca Raton, p 65

    Google Scholar 

  24. Truhlar DG, Garrett BC (1984) Annu Rev Phys Chem 35:159. doi:10.1146/annurev.pc.35.100184.001111

    Article  CAS  Google Scholar 

  25. Lu DH, Truong TN, Melissas VS, Lynch GC, Liu YP, Grarrett BC, Steckler R, Issacson AD, Rai SN, Hancock GC, Lauderdale JG, Joseph T, Truhlar DG (1992) Comput Phys Commun 71:235. doi:10.1016/0010-4655(92)90012-N

    Article  CAS  Google Scholar 

  26. Liu Y-P, Lynch GC, Truong TN, Lu D-H, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408. doi:10.1021/ja00059a041

    Article  CAS  Google Scholar 

  27. Garrett BC, Truhlar DG, Wagner AF, Dunning TH (1983) J Chem Phys 78:4400. doi:10.1063/1.445323

    Article  CAS  Google Scholar 

  28. Garrett BC, Abusalbi N, Kouri DJ, Truhlar DG (1985) J Chem Phys 83:2252. doi:10.1063/1.449318

    Article  CAS  Google Scholar 

  29. Taghikhani M, Parsafar GA, Sabzyan H (2005) J Phys Chem A 109:8158. doi:10.1021/jp0524173

    Article  CAS  Google Scholar 

  30. Galano A, Alvarez-ldaboy JR, Ruiz-Santoyo ME, Vivier-Bunge A (2004) Chem Phys Chem 5:1379. doi:10.1002/cphc.200400127

    CAS  Google Scholar 

  31. Gao H, Wang Y, Liu J, Yang L, Li Z, Sun C (2008) Phys Chem A 112:4176. doi:10.1021/jp077611z

    Article  CAS  Google Scholar 

  32. Truhlar DG (1991) J Comput Chem 12:266. doi:10.1002/jcc.540120217

    Article  CAS  Google Scholar 

  33. Chuang YY, Truhlar DG (2000) J Chem Phys 112:1221. doi:10.1063/1.480768

    Article  CAS  Google Scholar 

  34. Fast PL, Truhlar DG (2000) J Phys Chem A 104:6111. doi:10.1021/jp000408i

    Article  CAS  Google Scholar 

  35. Lide DR (1999) CRC Handbook of Chemistry and Physics, 80th edn. CRC Press, New York

    Google Scholar 

  36. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, IV: constants of diatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  37. Shimanouchi T (1972) Tables of molecular vibrational frequencies consolidated, vol 1. National Bureau of Standards U.S. GPO, Washinton

    Google Scholar 

  38. Chase MW, Davies CA, Downey JR, Frurip DJ, MacDonald RA, Syverud AN (1985) JANAF, vol 14 (Suppl 1); American Chemical Society, Washington DC

  39. Albu TV, Swaminathan S (2006) J Phys Chem A 110:7663. doi:10.1021/jp0615454

    Article  CAS  Google Scholar 

  40. Chemistry Webbook NIST, Linstrom PJ, Mallard WG (eds) Available from: http://webbook.Nist.Gov/chemistry

  41. Miller WH (ed) (1976) Dynamics of molecular collisions, Part B, vol. 2 of Modern theoretical chemistry, Plenum Press, New York

  42. Gilbert RG, Smith SC (1990) Theory of unimolecular and recombination reactions. Blackwell, Oxford

    Google Scholar 

  43. Allison TC, Truhlar DG (1998) In: Thompson DL (ed) Modern methods for multidimensional dynamics computations in chemistry. World Scientific, Singapore. p 618

  44. Taghikhani M, Parsafar GA (2007) J Phys Chem A 111:8095. doi:10.1021/jp072403s

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Donald G. Truhlar for providing the POLYRATE 9.3 program. This work was supported by the National Natural Science Foundation of China (20303007, 20333050, and 20073014), the Program for New Century Excellent Talents in University (NCET). The authors are grateful to the referees for their valuable comments on improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Yao Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 992 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, H., Wang, Y., Wang, Q. et al. Hydrogen abstraction from CF3CF2CFH2 and CF3CFHCF2H by OH radicals and Cl atoms: theoretical enthalpies and rate constants. Theor Chem Acc 124, 59–70 (2009). https://doi.org/10.1007/s00214-009-0581-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0581-5

Keywords

Navigation