Skip to main content
Log in

Computational study of the substitution effect on the mechanism for phospha-Wittig reaction

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The phospha-Wittig reaction HP=PH3 + O=CHX → HP=CHX + O=PH3 (X = H, F, Cl, Me, OMe, NMe2, CMe3) was examined using the density functional theory calculations. All of the structures were completely optimized at the B3LYP/6-311++G** level of theory. The reactivities of various O=CHX were examined by estimating their activation energies. The main finding of this work is that the configuration mixing model can successfully predict the relative ordering of the activation energy and reaction enthalpies of the phospha-Wittig reaction. It was demonstrated that O=CHX with more electro-releasing substituents will possess a smaller singlet–triplet splitting. This will facilitate the phospha-Wittig reaction and will result in a larger exothermicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maryanoff BE, Reitz AB (1989) Chem Rev 89:863–927. doi:10.1021/cr00094a007

    Article  CAS  Google Scholar 

  2. Volatron F, Eisenstein O (1987) J Am Chem Soc 109:2–14. doi:10.1021/ja00235a001

    Article  Google Scholar 

  3. Hoffmann RW (2001) Angew Chem Int Ed 40:1411–1416. doi:10.1002/1521-3773(20010417)40:8<1411::AID-ANIE1411>3.0.CO;2-U

    Article  CAS  Google Scholar 

  4. Liao HY, Yen MY (2008) N J Chem 32:511–516. doi:10.1039/b715049k

    Article  CAS  Google Scholar 

  5. Keith B, Dillon FM, Nixon JF (1998) Phosphorus: the carbon copy: from organophosphorus to phospha-organic chemistry. Wiley, Chichester

  6. Shah S, Protasiewicz JD (2000) Coord Chem Rev 210:181–201. doi:10.1016/S0010-8545(00)00311-8

    Article  CAS  Google Scholar 

  7. Marinetti A, Mathey F (1988) Angew Chem Int Ed Engl 27:1382–1384. doi:10.1002/anie.198813821

    Article  Google Scholar 

  8. Marinetti A, Bauer S, Ricard L, Mathey F (1990) Organometallics 9:793–798. doi:10.1021/om00117a040

    Article  CAS  Google Scholar 

  9. Marinetti A, Ricard L, Mathey F (1990) Organometallics 9:788–793. doi:10.1021/om00117a039

    Article  CAS  Google Scholar 

  10. Shah S, Yap GPA, Protasiewicz JD (2000) J Organomet Chem 608:12–20. doi:10.1016/S0022-328X(00)00284-9

    Article  CAS  Google Scholar 

  11. Shah S, Protasiewicz JD (1998) Chem Commun (Camb) 1585–1586. doi:10.1039/a802722f

  12. Mracec M, Pascariu A, Berger S, Mracec M (2007) Int J Quantum Chem 107:1782–1793. doi:10.1002/qua.21298

    Article  CAS  Google Scholar 

  13. Molander GA, Ham J, Canturk B (2007) Org Lett 9:821–824. doi:10.1021/ol063043e

    Article  CAS  Google Scholar 

  14. El-Batta A, Jiang CC, Zhao W, Anness R, Cooksy AL, Bergdahl M (2007) J Org Chem 72:5244–5259. doi:10.1021/jo070665k

    Article  CAS  Google Scholar 

  15. Robiette R, Richardson J, Aggarwal VK, Harvey JN (2006) J Am Chem Soc 128:2394–2409. doi:10.1021/ja056650q

    Article  CAS  Google Scholar 

  16. Yu XC, Huang X (2002) Synlett 1895–1897

  17. Lu WC, Wong NB, Zhang RQ (2002) Theor Chem Acc 107:206–210. doi:10.1007/s00214-001-0320-z

    CAS  Google Scholar 

  18. Balema VP, Wiench JW, Pruski M, Pecharsky VK (2002) J Am Chem Soc 124:6244–6245. doi:10.1021/ja017908p

    Article  CAS  Google Scholar 

  19. Wang Q, El Khoury M, Schlosser M (2000) Chem Eur J 6:420–426. doi:10.1002/(SICI)1521-3765(20000204)6:3<420::AID-CHEM420>3.0.CO;2-H

    Article  CAS  Google Scholar 

  20. Yamataka H, Nagase S (1998) J Am Chem Soc 120:7530–7536. doi:10.1021/ja974237f

    Article  CAS  Google Scholar 

  21. Yamataka H, Nagareda K, Takatsuka T, Ando K, Hanafusa T, Nagase S (1993) J Am Chem Soc 115:8570–8576. doi:10.1021/ja00072a008

    Article  CAS  Google Scholar 

  22. Seth M, Senn HM, Ziegler T (2005) J Phys Chem A 109:5136–5143. doi:10.1021/jp045318i

    Article  CAS  Google Scholar 

  23. Smith RC, Chen XF, Protasiewicz JD (2003) Inorg Chem 42:5468–5470. doi:10.1021/ic0345471

    Article  CAS  Google Scholar 

  24. Mathey F (2003) Angew Chem Int Ed 42:1578–1604. doi:10.1002/anie.200200557

    Article  CAS  Google Scholar 

  25. Shah S, Simpson MC, Smith RC, Protasiewicz JD (2001) J Am Chem Soc 123:6925–6926. doi:10.1021/ja015767l

    Article  CAS  Google Scholar 

  26. Power PP (1993) Angew Chem Int Ed Engl 32:850–851. doi:10.1002/anie.199308501

    Article  Google Scholar 

  27. Cummins CC, Schrock RR, Davis WM (1993) Angew Chem Int Ed Engl 32:756–759. doi:10.1002/anie.199307561

    Article  Google Scholar 

  28. Marinetti A, Ricard L, Mathey F (1992) Synthesis (Stuttgart) 1–2:157–162

  29. Marinetti A, Lefloch P, Mathey F (1991) Organometallics 10:1190–1195. doi:10.1021/om00050a061

    Article  CAS  Google Scholar 

  30. Becke AD (1993) J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  31. Becke AD (1992) J Chem Phys 97:9173–9177. doi:10.1063/1.463343

    Article  CAS  Google Scholar 

  32. Becke AD (1992) J Chem Phys 96:2155–2160. doi:10.1063/1.462066

    Article  CAS  Google Scholar 

  33. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  34. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654. doi:10.1063/1.438955

    Article  CAS  Google Scholar 

  35. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269. doi:10.1063/1.447079

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, Inc, Pittsburgh

    Google Scholar 

  37. Baerends EJ, Gritsenko OV (1997) J Phys Chem A 101:5383–5403. doi:10.1021/jp9703768

    Article  CAS  Google Scholar 

  38. Laird BB, Ross RB, Ziegler T (eds) (1996) Chemical applications of density-functional theory. American Chemical Society, Washington

    Google Scholar 

  39. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1996) NBO 4.0. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

  40. Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) J Phys Chem 100:16098–16104. doi:10.1021/jp960488j

    Article  CAS  Google Scholar 

  41. Hammond GS (1955) J Am Chem Soc 77:334–338. doi:10.1021/ja01607a027

    Article  CAS  Google Scholar 

  42. Shaik SS, Schlegel HB, Wolfe S (1992) Theoretical aspects of physical organic chemistry: the Sn2 mechanism. Wiley, New York

    Google Scholar 

  43. Su MD, Liao HY, Chung WS, Chu SY (1999) J Org Chem 64:6710–6716. doi:10.1021/jo990504j

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to the National Center for High-performance Computing for computer time and facilities. The author also thank the National Science Council of Taiwan for financial support (NSC 97-2113-M-152-001-MY2) and Prof. Dr. San-Yan Chu for helpful and generous suggestions. Also, the author acknowledges the referees for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Yi Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, HY. Computational study of the substitution effect on the mechanism for phospha-Wittig reaction. Theor Chem Acc 124, 49–57 (2009). https://doi.org/10.1007/s00214-009-0579-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0579-z

Keywords

Navigation