Skip to main content
Log in

Long, multicenter bonding in π-[terthiophene] 2+2 dimers

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The repulsive nature of the interaction between the cation radicals of the π-[terthiophene] 2+2 dimers, 1 2+ 2 , found in crystals has been concluded from B3LYP/6-31+G(d) calculations. Hence, the bonding component is weaker than the Coulombic repulsion, consistent to recent findings for [TTF]·+–[TTF]·+ interactions (TTF = tetrathiafulvalene). The existence of 1 2+ 2 dimers originates from the cation+–anion electrostatic interactions, which exceeds the combined effect of the 1 .+1 .+ plus (SbF6)–(SbF6) repulsions in 1 2(SbF6)2, similar to what is found for [TTF]·+–[TTF]·+ interactions in [TTF]2(ClO4)2 aggregates and in crystals. The long, multicenter bond in 1 2+ 2 is characterized as a 2e/10c bond from an Atoms-in-molecules analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. B3LYP is a density functional obtained by taking the three parameter non-local exchange functional of Becke and the non-local correlation functional of Lee-Yang-Parr [22, 23].

  2. The MCQDPT/CASSCF(2,2) method performs multiconfigurational perturbation calculation on a multiconfigurational CASSCF(2,2) wavefunction using the MCQDPT method [24] provides an accurate evaluation of the dispersion component of the interaction energy and gives results similar to those obtained using the more popular CASPT2 method [25]. The (2,2) active space in these CASSCF(2,2), and MCQDPT/CASSCF(2,2) calculations was that resulting from combining the two SOMO orbitals of the fragments.

  3. The validity of the counterpoise method for correcting the BSSE was demonstrated analytically in Ref. [29] and numerically in Ref. [30].

  4. The closed-shell singlet state of the [TTF]2(ClO4)2 aggregate was also found to be −19.7 kcal/mol more stable than its fragmentation into two [TTF]+ and two (ClO4) ions at the crystal geometry (the open-shell singlet and triplet states are also more stable than the fragments by −19.6 and −6.8 kcal/mol, respectively).

References

  1. Hotta S, Waragai K (1993) Adv Mater 5:896. doi:10.1002/adma.19930051204

    Article  CAS  Google Scholar 

  2. Nalwa HS (ed) (1997) Handbook of organic conductive molecules and polymers. Wiley, New York

    Google Scholar 

  3. Chang AC, Miller LL (1987) Synth Met 22:71

    Article  CAS  Google Scholar 

  4. Zinger B, Mann KR, Hill MG, Miller LL (1992) Chem Mater 4:1113. doi:10.1021/cm00023a033

    Article  CAS  Google Scholar 

  5. Hill MG, Mann KR, Miller LL, Penneau JF (1992) J Am Chem Soc 114:2728. doi:10.1021/ja00033a063

    Article  CAS  Google Scholar 

  6. Miller LL, Yu Y, Gunic E, Duan R (1995) Adv Mater 7:547. doi:10.1002/adma.19950070606

    Article  CAS  Google Scholar 

  7. Graf DD, Miller LL, Mann KR (1996) J Am Chem Soc 118:5480. doi:10.1021/ja960194b

    Article  CAS  Google Scholar 

  8. Brocks G (2000) J Chem Phys 112:5353. doi:10.1063/1.481105

    Article  CAS  Google Scholar 

  9. Yamazaki D, Nishinaga T, Tanino N, Komatsu K (2006) J Am Chem Soc 128:14470. doi:10.1021/ja065995l

    Article  CAS  Google Scholar 

  10. Garcia-Yoldi I, Miller JS, Novoa JJ (2009) J Phys Chem A (in press)

  11. Novoa JJ, Lafuente P, Del Sesto RE, Miller JS (2001) Angew Chem Int Ed 40:2540

    Article  CAS  Google Scholar 

  12. Novoa JJ, Lafuente P, Del Sesto RE, Miller JS (2002) Angew Chem Int Ed 4:373

    CAS  Google Scholar 

  13. Del Sesto RE, Miller JS, Lafuente P, Novoa JJ (2002) Chem Eur J 8:4894

    Article  CAS  Google Scholar 

  14. Miller JS, Novoa JJ (2007) Acc Chem Res 40:189

    Article  CAS  Google Scholar 

  15. Novoa JJ, Ribas-Ariño J, Shum WW, Miller JS (2007) Inorg Chem 46:103

    Article  CAS  Google Scholar 

  16. Garcia-Yoldi I, Mota F, Novoa JJ (2007) J Comput Chem 28:326

    Article  CAS  Google Scholar 

  17. Garcia-Yoldi I, Miller JS, Novoa JJ (2007) J Phys Chem A 111:8020

    Article  CAS  Google Scholar 

  18. Garcia-Yoldi I, Miller JS, Novoa JJ (2008) Phys Chem Chem Phys 10:4106

    Article  CAS  Google Scholar 

  19. Lu J-M, Rosokha SV, Kochi JK (2003) J Am Chem Soc 125:12161

    Article  Google Scholar 

  20. Jakowski J, Simons J (2003) J Am Chem Soc 125:16089

    Article  CAS  Google Scholar 

  21. Jung Y, Head-Gordon M (2004) Phys Chem Chem Phys 6:2008

    Article  CAS  Google Scholar 

  22. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  24. Nakano H, Nakayama K, Hirao K, Dupuis M (1997) J Chem Phys 106:4912. doi:10.1063/1.473540

    Article  CAS  Google Scholar 

  25. Roos BO, Andersson K, Fulscher MK, Malmqvist PA, Serrano-Andres L, Pierloot K, Merchan M (1996) Adv Chem Phys 93:219. doi:10.1002/9780470141526.ch5

    Article  CAS  Google Scholar 

  26. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  27. Frisch MJ et al (2004) Gaussian-03, Revision-C.02. Gaussian Inc., Wallingford

    Google Scholar 

  28. Boys SF, Bernardi F (1970) Mol Phys 19:553. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  29. van Duijneveldt FB, de Rijdt JGCM, van Lenthe JH (1994) Chem Rev 94:1873. doi:10.1021/cr00031a007

    Article  Google Scholar 

  30. Novoa JJ, Planas M, Whangbo MH (1994) Chem Phys Lett 225:240. doi:10.1016/0009-2614(94)00646-6

    Article  CAS  Google Scholar 

  31. Bader RF (1990) Atoms in molecules. A quantum theory, Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgments

I.G. Yoldi and J.J. Novoa were supported by the Spanish Science and Education Ministry (BQU2002-04587-C02-02 and UNBA05-33-001, and Ph.D. grant to I.G. Yoldi) and the CIRIT (2001SGR-0044 and 2005-PEIR-0051/69). Computer time was also provided by CESCA and BSC. J.S. Miller was supported in part by the U. S. NSF (Grant No. 0553573), and the DOE (Grant No. DE FG 03-93ER45504). One of us would also express here his gratitude to Prof. S. Olivella for his guidance, support, and personal friendship in the early years of his scientific career.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joel S. Miller or Juan J. Novoa.

Additional information

Dedicated to Professor Santiago Olivella on the occasion of his 65th birthday and published as part of the Olivella Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoldi, I.G., Miller, J.S. & Novoa, J.J. Long, multicenter bonding in π-[terthiophene] 2+2 dimers. Theor Chem Acc 123, 137–143 (2009). https://doi.org/10.1007/s00214-009-0543-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0543-y

Keywords

Navigation