Skip to main content
Log in

A theoretical study on photodissociation of the A state of the H2S+ ion

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We have studied photodissociation of the A state of the H2S+ ion using the quantum-chemical CAS methods, and the 12 A″ (X 2 B 1) and 14 A″ states are involved in photodissociation of the 12 A′ (A 2 A 1) state (the electronic states in dissociation were studied in the C s symmetry). The CASPT2 S-loss dissociation potential energy curve (PEC) calculations indicate that the 12 A″ and 12 A′ states correlate with the second limit [H2 + S+(2 D)] while the 14 A″ state correlates with the first limit [H2 + S+(4S)] and that there are a transition state and a local minimum along the 12 A′ PEC and the repulsive 14 A″ PEC crosses the 12 A″ and 12 A′ PECs. The CASPT2 H-loss dissociation PEC calculations indicate that the 12 A″ and 14 A″ states correlate with the first limit [HS+(X 3Σ) + H] while the 12 A′ state correlates with the second limit [HS+(a 1Δ) + H] and that the repulsive 14 A″ PEC crosses the 12 A′ PEC. For the crossing doublet and quartet states in pairs, we performed CASSCF minimum energy crossing point (MECP) calculations, and the CASSCF spin-orbit couplings and CASPT2 energies at the MECP geometries were calculated. We examined the two previously proposed mechanisms (mechanisms I and II) for dissociation of the A state to the S+ ion, based on our calculation results. We suggest processes for dissociation of the A state to the S+ ion (processes I and II, based on mechanisms I and II, respectively) and to the SH+ ion (process III) and conclude that photodissociation of the A state mainly leads to the S+ ion via the most energetically favorable process II: A 2 A 1 (12 A′) (2.38 eV) → barrier at the linearity (2.96 eV) → X 2 B 1 (12 A″) (0.0 eV) → the 12 A″/14 A″ MECP (3.50 eV, large spin-orbit coupling) → H2 \( (X^{ 1} \Upsigma_{\text{g}}^{ + } ) \) + S+(4S) (2.92 eV) (the CASPT2 relative energy values to X 2 B 1 are given in parentheses and the largest value is 3.50 eV at the MECP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hirst DM (2003) J Chem Phys 118:9175–9184. doi:10.1063/1.1568080

    Article  CAS  Google Scholar 

  2. Hirsch G, Bruna PJ (1980) Int J Mass Spectrom Ion Phys 36:37–46. doi:10.1016/0020-7381(80)80005-2

    Article  CAS  Google Scholar 

  3. Li WZ, Huang MB (2005) Chem Phys 315:133–141. doi:10.1016/j.chemphys.2005.04.005

    Article  CAS  Google Scholar 

  4. Webb AD, Dixon RN, Ashfold MNR (2007) J Chem Phys 127:224307. doi:10.1063/1.2800559

    Article  CAS  Google Scholar 

  5. Webb AD, Kawanaka N, Dixon RN, Ashfold MNR (2007) J Chem Phys 127:224308. doi:10.1063/1.2800565

    Google Scholar 

  6. Dibeler VH, Rosenstock HM (1963) J Chem Phys 39:3106–3111. doi:10.1063/1.1734150

    Article  CAS  Google Scholar 

  7. Dibeler VH, Liston SK (1968) J Chem Phys 49:482–485. doi:10.1063/1.1670100

    Article  CAS  Google Scholar 

  8. Eland JHD (1979) Int J Mass Spectrom Ion Phys 31:161–173. doi:10.1016/0020-7381(79)80115-1

    Article  CAS  Google Scholar 

  9. Möhlmann GR, Deheer FJ (1975) Chem Phys Lett 15:353–356. doi:10.1016/0009-2614(75)80254-5

    Article  Google Scholar 

  10. Dixon RN, Duxbury G, Horani M, Rostas J (1971) Mol Phys 22:977–992. doi:10.1080/00268977100103311

    Article  CAS  Google Scholar 

  11. Edwards CP, Maclean CS, Sarre PJ (1982) Chem Phys Lett 87:11–13. doi:10.1016/0009-2614(82)83542-2

    Article  CAS  Google Scholar 

  12. Prest HF, Tzeng WB, Brom JM Jr, Ng CY (1983) Int J Mass Spectrom Ion Phys 50:315–329. doi:10.1016/0020-7381(83)87008-9

    Article  CAS  Google Scholar 

  13. Jarrold MF, Illies AJ, Bowers MT (1982) Chem Phys 65:19–28. doi:10.1016/0301-0104(82)85052-0

    Article  CAS  Google Scholar 

  14. Ibuki T (1984) J Chem Phys 81:2915–2918. doi:10.1063/1.448038

    Article  CAS  Google Scholar 

  15. Tokue I, Yamasaki K, Nanbu S (2003) J Chem Phys 119:5882–5888. doi:10.1063/1.1602064

    Article  CAS  Google Scholar 

  16. Carney TE, Baer T (1981) J Chem Phys 75:4422–4429. doi:10.1063/1.442607

    Article  CAS  Google Scholar 

  17. Fiquet-Fayard F, Guyon PM (1966) Mol Phys 11:17–30. doi:10.1080/00268976600100811

    Article  CAS  Google Scholar 

  18. Feng RF, Cooper G, Brion CE (1999) Chem Phys 249:223–236. doi:10.1016/S0301-0104(99)00232-3

    Article  CAS  Google Scholar 

  19. Hochlaf M, Weitzel KM (2004) J Chem Phys 120:6944–6956. doi:10.1063/1.1669386

    Article  CAS  Google Scholar 

  20. Tokue I, Yamasaki K, Nanbu S (2003) J Chem Phys 119:5874–5881. doi:10.1063/1.1602063

    Article  CAS  Google Scholar 

  21. Roos BO (1987) Adv Chem Phys 69:399–445. doi:10.1002/9780470142943.ch7

    Article  CAS  Google Scholar 

  22. Andersson K, Roos BO (1993) Int J Quantum Chem 45:591–607. doi:10.1002/qua.560450610

    Article  CAS  Google Scholar 

  23. Andersson K, Malmqvist P, Roos BO (1995) In: Yarkony DR (ed) Modern electronic structure theory. World Scientific, Singapore, vol 1, p 55

  24. Chang HB, Chen BZ, Huang MB (2008) J Phys Chem A 112:1688–1693. doi:10.1021/jp710633s

    Article  CAS  Google Scholar 

  25. Andersson K et al (2005) MOLCAS (version 6.2). University of Lund, Sweden

    Google Scholar 

  26. Almlof J, Taylor PR (1987) J Chem Phys 86:4070–4077. doi:10.1063/1.451917

    Article  CAS  Google Scholar 

  27. Widmark PO, Malmqvist PA, Roos BO (1990) Theor Chim Acta 77:291–306. doi:10.1007/BF01120130

    Article  CAS  Google Scholar 

  28. Widmark PO, Persson BJ, Roos BO (1991) Theor Chim Acta 79:419–432. doi:10.1007/BF01112569

    Article  CAS  Google Scholar 

  29. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of diatomic molecules. Van Nostrand Reinhold Co., New York

  30. Dunlavey SJ, Dyke JM, Fayad NK, Jonathan N, Morris A (1979) Mol Phys 38:729. doi:10.1080/00268977900102001

    Article  CAS  Google Scholar 

  31. Turner DW, Baker C, Baker AD, Brundle CR (1970) Molecular photoelectron spectroscopy. Wiley, London

    Google Scholar 

  32. Duxbury G, Horani M, Rostas J (1972) Proc R Soc Lond A 331:109

    Article  CAS  Google Scholar 

  33. Duxbury G, Jungen C, Rostas J (1983) Mol Phys 48:719. doi:10.1080/00268978300100541

  34. Potts AW, Price WC (1972) Proc R Soc A 326:181–197. doi:10.1098/rspa.1972.0004

    Article  Google Scholar 

Download references

Acknowledgment

We appreciate the financial support of this work that was provided by National Natural Science Foundation of China through Contract No. 20773161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Bao Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, HB., Huang, MB. A theoretical study on photodissociation of the A state of the H2S+ ion. Theor Chem Account 122, 189–196 (2009). https://doi.org/10.1007/s00214-008-0498-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0498-4

Keywords

Navigation