Theoretical Chemistry Accounts

, Volume 122, Issue 3–4, pp 179–188 | Cite as

Density functional study of the influence of C5 cytosine substitution in base pairs with guanine

  • Adam Moser
  • Rebecca Guza
  • Natalia Tretyakova
  • Darrin M. York
Regular Article

Abstract

The present study employs density-functional electronic structure methods to investigate the effect of chemical modification at the C5 position of cytosine. A series of experimentally motivated chemical modifications are considered, including alkyl, halogen, aromatic, fused ring, and strong σ and π withdrawing functional groups. The effect of these modifications on cytosine geometry, electronic structure, proton affinities, gas phase basicities, cytosine–guanine base pair hydrogen bond network and corresponding nucleophilicity at guanine are examined. Ultimately, these results play a part in dissecting the effect of endogenous cytosine methylation on the reactivity of neighboring guanine toward carcinogens and DNA alkylating agents.

References

  1. 1.
    Jost J-P, Hofsteenge J (1992) Proc Natl Acad Sci USA 89:9699CrossRefGoogle Scholar
  2. 2.
    Holman MR, Ito T, Rokita SE (2007) J Am Chem Soc 129:6CrossRefGoogle Scholar
  3. 3.
    Ehrlich M, Gama-Sosa MA, Huang L-H, Midgett RM, Kuo KC, McCune RA, Gehrke C (1982) Nucleic Acids Res 10:2709CrossRefGoogle Scholar
  4. 4.
    Gal-Yam EN, Saito Y, Egger G, Jones PA (2008) Annu Rev Med 59:267CrossRefGoogle Scholar
  5. 5.
    Bird A (2007) Nature 447:396CrossRefGoogle Scholar
  6. 6.
    Romanov GA, Zhavoronkova EN, Savel’ev SV, Vanyushin BF (1983) Neurosci Behav Physiol 16:285CrossRefGoogle Scholar
  7. 7.
    Yu D, Berlin JA, Penning TM, Field J (2002) Chem Res Toxical 15:832CrossRefGoogle Scholar
  8. 8.
    Hausheer FH, Rao SN, Gamcsik MP, Kollman PA, Colvin OM, Saxe JD, Nelkin BD, McLennan IJ, Barnett G, Baylin SB (1989) Carcinogenesis 10:1131CrossRefGoogle Scholar
  9. 9.
    Bird AP (1986) Nature 321:209CrossRefGoogle Scholar
  10. 10.
    Riggs AD (1983) Adv Cancer Res 40:1CrossRefGoogle Scholar
  11. 11.
    Denissenko MF, Chen JX, Tang M-S, Pfeifer GP (1997) Proc Natl Acad Sci USA 94:3893CrossRefGoogle Scholar
  12. 12.
    Hoffmann D, Hoffmann I (1997) J Toxicol Environ Health 50:307CrossRefGoogle Scholar
  13. 13.
    Hecht SS (1999) J Natl Cancer Inst 91:1194CrossRefGoogle Scholar
  14. 14.
    Sendowski K, Rajewsky MF (1991) Mutat Res 250:153Google Scholar
  15. 15.
    Mathison BH, Said B, Shank RC (1993) Carcinogenesis 14:323CrossRefGoogle Scholar
  16. 16.
    Chen JX, Zheng Y, West M, shong Tang M (1998) Cancer Res 58:2070Google Scholar
  17. 17.
    Weisenberger DJ, Romano LJ (1999) J Biol Chem 274:23948CrossRefGoogle Scholar
  18. 18.
    Das A, Tang KS, Gopalakrishnan S, Waring MJ, Tomasz M (1999) Chem Biol 6:461CrossRefGoogle Scholar
  19. 19.
    Ross MK, Mathison BH, Said B, Shank RC (1999) Biochem Biophys Res Commun 254:114CrossRefGoogle Scholar
  20. 20.
    Li V-S, Reed M, Zheng Y, Kohn H, Tang M-S (2000) Biochemistry 39:2612CrossRefGoogle Scholar
  21. 21.
    Pfeifer GP, Tang M, Denissenko MF (2000) Curr Top Micro Biol Immunol 249:1Google Scholar
  22. 22.
    Burdzy A, Noyes KT, Valinluck V, Sowers LC (2002) Nucleic Acids Res 30:4068CrossRefGoogle Scholar
  23. 23.
    Rajesh M, Wang G, Jones R, Tretyakova N (2005) Biochemistry 44:2197CrossRefGoogle Scholar
  24. 24.
    Hecht SS (2000) J Natl Cancer Inst 92:782CrossRefGoogle Scholar
  25. 25.
    Tretyakova N, Matter B, Jones R, Shallop A (2002) Biochemistry 41:9535CrossRefGoogle Scholar
  26. 26.
    Ziegel R, Shallop A, Upadhyaya P, Jones R, Tretyakova N (2004) Biochemistry 43:540CrossRefGoogle Scholar
  27. 27.
    Zhang N, Lin C, Huang X, Kolbanovskiy A, Hingerty BE, Amin S, Broyde S, Geacintov NE, Patei DJ (2005) J Mol Biol 346:951CrossRefGoogle Scholar
  28. 28.
    Rodríguez FA, Cai Y, Lin C, Tang Y, Kolbanovskiy A, Amin S, Patel DJ, Broyde S, Geacintov NE (2007) Nucleic Acids Res 35:1555CrossRefGoogle Scholar
  29. 29.
    Valinluck V, Liu P, Kang JI Jr, Burdzy A, Sowers LC (2005) Nucleic Acids Res 33:3057CrossRefGoogle Scholar
  30. 30.
    Jang YH, Sowers LC, Çağin T, Goddard WA, III (2001) J Phys Chem A 105:274CrossRefGoogle Scholar
  31. 31.
    Meng F, Liu C, Xu W (2003) Chem Phys Lett 373:72CrossRefGoogle Scholar
  32. 32.
    Dannenberg JJ, Tomasz M (2000) J Am Chem Soc122:2062CrossRefGoogle Scholar
  33. 33.
    Kryachko ES, Nguyen MT (2002) J Phys Chem A 106:9319CrossRefGoogle Scholar
  34. 34.
    Sherer EC, York DM, Cramer CJ (2003) J Comput Chem 24:57CrossRefGoogle Scholar
  35. 35.
    Giese TJ, Sherer EC, Cramer CJ, York DM (2005) J Chem Theory Comput 1:1275CrossRefGoogle Scholar
  36. 36.
    Šponer J, Leszczynski J, Hobza P (2001) J Mol Struct (Theochem) 573:43CrossRefGoogle Scholar
  37. 37.
    Řeha D, Kabeláč M, Ryjáček F, Šponer J, Šponer JE, Elstner M, Suhai S, Hobza P (2002) J Am Chem Soc 124:3366CrossRefGoogle Scholar
  38. 38.
    Kumar A, Elstner M, Suhai S (2003) Int J Quantum Chem 95:44CrossRefGoogle Scholar
  39. 39.
    Dabkowska I, Jurečka P, Hobza P (2005) J Chem Phys 122:204322CrossRefGoogle Scholar
  40. 40.
    Giese TJ, Gregersen BA, Liu Y, Nam K, Mayaan E, Moser A, Range K, Nieto Faza O, Silva Lopez C, Rodriguez de Lera A, Schaftenaar G, Lopez X, Lee T, Karypis G, York DM (2006) J Mol Graph Model 25:423CrossRefGoogle Scholar
  41. 41.
  42. 42.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Inc., WallingfordGoogle Scholar
  43. 43.
    Tomasi J, Persico M (1994) Chem Rev 94:2027CrossRefGoogle Scholar
  44. 44.
    Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327CrossRefGoogle Scholar
  45. 45.
    Mineva T, Russo N, Sicilia E (1998) J Comput Chem 19:290CrossRefGoogle Scholar
  46. 46.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995CrossRefGoogle Scholar
  47. 47.
    Range K, Riccardi D, Cui Q, Elstner M, York DM (2005) Phys Chem Chem Phys 7:3070CrossRefGoogle Scholar
  48. 48.
    Range K, López CS, Moser A, York DM (2006) J Phys Chem A 110:791CrossRefGoogle Scholar
  49. 49.
    Li G, Cui Q (2003) J Phys Chem B 107:14521CrossRefGoogle Scholar
  50. 50.
    Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV, Tuttle TR Jr (1998) J Phys Chem A 102:7787CrossRefGoogle Scholar
  51. 51.
    Camaioni DM, Schwerdtfeger CA (2005) J Phys Chem A 109:10795CrossRefGoogle Scholar
  52. 52.
    Kawahara S, Kobori A, Sekine M, Taira K, Uchimaru T (2001) J Phys Chem A 105:10596CrossRefGoogle Scholar
  53. 53.
    Asensio A, Kobko N, Dannenberg JJ (2003) J Phys Chem A 107:6441CrossRefGoogle Scholar
  54. 54.
    Breneman CM, Wiberg KB (1990) J Comput Chem 11:361CrossRefGoogle Scholar
  55. 55.
    Zhang X, Mathews CK (1994) J Biol Chem 26:7066Google Scholar
  56. 56.
    Sowers LC (2000) J Biomol Struct Dyn 17:713Google Scholar
  57. 57.
    Yanson IK, Teplitsky AB, Sukhodub LF (1979) Biopolymers 18:1149CrossRefGoogle Scholar
  58. 58.
    Šponer J, Leszczynski J, Hobza P (2002) Biopolymers 61:3Google Scholar
  59. 59.
    Šponer J, Jurečka P, Hobza P (2004) J Am Chem Soc 126:10142CrossRefGoogle Scholar
  60. 60.
    Mo Y (2006) J Mol Model 12:665CrossRefGoogle Scholar
  61. 61.
    Valinluck V, Wu W, Liu P, Neidigh JW, Sowers LC (2006) Chem Res Toxicol 19:556CrossRefGoogle Scholar
  62. 62.
    Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. W. H. Freeman and Co., New YorkGoogle Scholar
  63. 63.
    Norberg J, Vihinen M (2001) J Mol Struct Theochem 546:51CrossRefGoogle Scholar
  64. 64.
    Geacintov NE, Yoshia H, Ibanez V, Jacobs SA, Harvey RG (1984) Biochem Biophys Res Commun 122:33CrossRefGoogle Scholar
  65. 65.
    Sowers LC, Shaw BR, Sedwick WD (1987) Biochem Biophys Res Commun 148:790CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Adam Moser
    • 1
  • Rebecca Guza
    • 2
  • Natalia Tretyakova
    • 2
  • Darrin M. York
    • 1
  1. 1.Department of ChemistryUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Medicinal Chemistry and the Cancer CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations