Skip to main content
Log in

Thermodynamics of the gas-phase reactions in chemical vapor deposition of silicon carbide with methyltrichlorosilane precursor

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The gas-phase reaction thermodynamics in the chemical vapor deposition system of preparing silicon carbide via methyltrichlorosilane pyrolysis is investigated with a relatively complete set of 226 species, in which the thermodynamic data of 163 species are evaluated in this work with accurate model chemistry G3(MP2) and G3//B3LYP calculations combined with standard statistical thermodynamics. The data include heat capacity (C θ p,m ), entropy (S θm ), enthalpy of formation (Δf H θm ) and Gibbs free energy of formation (Δf G θm ). All the results are consistent with the available reliable experiments. Based on these thermodynamic data, the equilibrium concentration distribution of the 226 possible species in 300–2,000 K is evaluated with the chemical equilibrium principle under a typical experimental condition. It is shown that the theoretical results are in very good agreement with the experiments. We conclude that the present work is instructive for experiments with different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fitzer E, Kehr D (1976) Carbon, carbide and silicide coatings. Thin Solid Films 39:55–57. doi:10.1016/0040-6090(76)90623-4

    Article  CAS  Google Scholar 

  2. Powell JA, Matus LG (1989) In: Harris GL, Yang CY-W (eds) Amorphous and crystalline silicon carbide (Springer proceedings in physics, vol 34). Springer, Berlin, p 2

  3. Buljan ST, Pesto AE, Kim HJ (1989) Ceramics whiskers and particulate composites: properties, reliability and applications. Am Ceram Soc Bull 68:387–394

    CAS  Google Scholar 

  4. Loumagne F, Langlais F, Naslain R (1995) Experimental kinetic study of the chemical vapour deposition of SiC-based ceramics from CH3SiCl3/H2 gas precursor. J Cryst Growth 155:198–204. doi:10.1016/0022-0248(95)00180-8

    Article  CAS  Google Scholar 

  5. Loumagne F, Langlais F, Naslain R et al (1995) Physicochemical properties of SiC-based ceramics deposited by low pressure chemical vapor deposition from CH3SiCl3/H2. Thin Solid Films 254:75–82. doi:10.1016/0040-6090(94)06237-F

    Article  CAS  Google Scholar 

  6. Loumagne F, Langlais F, Naslain R (1995) Reactional mechanisms of the chemical vapour deposition of SiC-based ceramics from CH3SiCl3/H2 gas precursor. J Cryst Growth 155:205–213. doi:10.1016/0022-0248(95)00181-6

    Article  CAS  Google Scholar 

  7. Josiek A, Langlais F (1996) Residence-time dependent kinetics of CVD growth of SiC in the MTS/H2 system. J Cryst Growth 160:253–260. doi:10.1016/0022-0248(95)00744-X

    Article  CAS  Google Scholar 

  8. Jonas S, Ptak WS, Sadowski W et al (1995) FTIR in situ studies of the gas phase reactions in chemical vapor deposition of SiC. J Electrochem Soc 142:2357–2362. doi:10.1149/1.2044300

    Article  CAS  Google Scholar 

  9. Hopfe V, Mosebach H, Erhard M et al (1995) In-situ FTIR emission spectroscopy in a technological environment: chemical vapour infiltration (CVI) of SiC composites. J Mol Struct 347:331–342. doi:10.1016/0022-2860(95)08555-A

    Article  CAS  Google Scholar 

  10. Papasouliotis GD, Sotirchos SV (1995) Gravimetric investigation of the deposition of SiC films through decomposition of methyltrichlorosilane. J Electrochem Soc 142:3834–3844. doi:10.1149/1.2048421

    Article  Google Scholar 

  11. Ganz M, Dorval N, Lefebvre M et al (1996) In situ optical analysis of the gas phase during the deposition of silicon carbide from methyltrichiorosilane. J Electrochem Soc 143:1654–1661

    Article  CAS  Google Scholar 

  12. Papasouliotis GD, Sotirchos SV (1998) Hydrogen chloride effects on the CVD of silicon carbide from methyltrichlorosilane. Chem Vap Depos 4:235–246 doi:10.1002/(SICI)1521-3862(199812)04:06<235::AID-CVDE235>3.0.CO;2-R

    Article  CAS  Google Scholar 

  13. Hüttinger KJ (1998) CVD in HotWall reactors—the interaction between homogeneous gas-phase and heterogeneous surface reactions. Chem Vap Depos 4:151–158 doi:10.1002/(SICI)1521-3862(199807)04:04<151::AID-CVDE151>3.0.CO;2-2

    Article  Google Scholar 

  14. Papasouliotisa GD, Sotirchos SV (1998) Steady-state multiplicity phenomena in the deposition of silicon carbide. J Electrochem Soc 145:3908–3919. doi:10.1149/1.1838892

    Article  Google Scholar 

  15. Papasouliotisa GD, Sotirchos SV (1999) Experimental study of atmospheric pressure chemical vapor deposition of silicon carbide from methyltrichlorosilane. J Mater Res 14:3397–3409. doi:10.1557/JMR.1999.0460

    Article  Google Scholar 

  16. Sone H, Kaneko T, Miyakawa N (2000) In situ measurements and growth kinetics of silicon carbide chemical vapor deposition from methyltrichlorosilane. J Cryst Growth 219:245–252. doi:10.1016/S0022-0248(00)00616-3

    Article  CAS  Google Scholar 

  17. Willian BP (1993) Chemical vapor deposition of silicon carbide in the methyltrichlorosilane–hydrogen system. PhD thesis, The Ohio State University

  18. Boisvert RP (1995) A thermodynamic and kinetic study of the deposition of SiC from various precursor systems with application to the preparation of lamellar-matrix/continuous fiber-reinforced composites. PhD thesis, Rensselaer Polytechnic Institute, Troy, New York

  19. Zhang WG, Hüttinger KJ (2001) CVD of SiC from methyltrichlorosilane. Part II: composition of the gas phase and the deposit. Chem Vap Depos 7:173–181 doi:10.1002/1521-3862(200107)7:4<173::AID-CVDE173>3.0.CO;2-X

    Article  CAS  Google Scholar 

  20. Reznik B, Gerthsen D, Zhang WG, Hüttinger KJ (2003) Microstructure of SiC deposited from methyltrichlorosilane. J Eur Ceram Soc 23:1499–1508. doi:10.1016/S0955-2219(02)00364-3

    Article  CAS  Google Scholar 

  21. Allendorf MD, Kee RJ (1991) A model of silicon carbide chemical vapor deposition. J Electrochem Soc 138:841–852. doi:10.1149/1.2085688

    Article  CAS  Google Scholar 

  22. Lee YL, Sanchez JM (1997) Theoretical study of thermodynamics relevant to tetramethylsilane pyrolysis. J Cryst Growth 178:513–517. doi:10.1016/S0022-0248(97)00091-2

    Article  CAS  Google Scholar 

  23. Allendorf MD, Melius CF (1992) A model of silicon carbide chemical vapor deposition. J Phys Chem 96:429–437. doi:10.1021/j100180a080

    Article  Google Scholar 

  24. Su MD, Schlegel HB (1993) An ab initio MO study of the thermal decomposition of chlorinated monosilanes, SiH4nCl n , (n = 0–4). J Phys Chem 97:9981–9985. doi:10.1021/j100141a015

    Article  CAS  Google Scholar 

  25. Vorob’ev AN, Karpov SY, Zhmakin AI et al (2000) Effect of gas-phase nucleation on chemical vapor deposition of silicon carbide. J Cryst Growth 211:343–346. doi:10.1016/S0022-0248(99)00776-9

    Article  CAS  Google Scholar 

  26. Allendorf MD, Melius CF (1993) Theoretical study of the thermochemistry of molecules in the Si–C–Cl–H system. J Phys Chem 97:720–728. doi:10.1021/j100105a031

    Article  CAS  Google Scholar 

  27. Papasouliotis GD, Sotirchos SV (1994) On the homogeneous chemistry of the thermal decomposition of methyltrichlorosilane. J Electrochem Soc 141:1599–1611. doi:10.1149/1.2054969

    Article  CAS  Google Scholar 

  28. Osterheld TH, Allendorf MD, Melius CF (1994) Unimolecular decomposition of methyltrichlorosilane: RRKM calculations. J Phys Chem 98:6995–7003. doi:10.1021/j100079a018

    Article  CAS  Google Scholar 

  29. Zhang WG, Hüttinger KJ (2001) CVD of SiC from methyltrichlorosilane. Part I deposition rates. Chem Vap Depos 7:167–172 doi:10.1002/1521-3862(200107)7:4<167::AID-CVDE167>3.0.CO;2-L

    Article  CAS  Google Scholar 

  30. Mousavipour SH, Saheb V, Ramezani S (2004) Kinetics and mechanism of pyrolysis of methyltrichlorosilane. J Phys Chem A 108:1946–1952. doi:10.1021/jp0306592

    Article  CAS  Google Scholar 

  31. Ge Y, Gordon MS, Battaglia F et al (2007) Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 1. Thermodynamics. J Phys Chem A 111:1462–1474. doi:10.1021/jp065453q

    Article  CAS  Google Scholar 

  32. Ge Y, Gordon MS, Battaglia F et al (2007) Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 2. Reaction paths and transition states. J Phys Chem A 111:1475–1486. doi:10.1021/jp065455a

    Article  CAS  Google Scholar 

  33. Xu YD, Cheng LF, Zhang LT et al (2001) High toughness, 3D textile, SiC/SiC composites by chemical vapor infiltration. Mater Sci Eng A 318:183–188. doi:10.1016/S0921-5093(01)01303-X

    Article  Google Scholar 

  34. Nannetti CA, Riccardi B, Ortona A (2002) Development of 2D and 3D Hi-Nicalon fibres/SiC matrix composites manufactured by a combined CVI-PIP route. J Nucl Mater 307–311:1196–1199. doi:10.1016/S0022-3115(02)00956-X

    Article  Google Scholar 

  35. Luthra KL (2002) Melt infiltrated (MI) SiC/SiC composites for gas turbine applications. Presented at DER peer review for microturbine and industrial gas turbines programs, Fairfax, Virginia, March 12–14, 2002

  36. Brennan JJ (2000) Interfacial characterization of a slurry-cast melt-infiltrated SiC/SiC ceramic–matrix composite. Acta Mater 48:4619–4628. doi:10.1016/S1359-6454(00)00248-2

    Article  CAS  Google Scholar 

  37. Yano T, Budiyanto K, Yoshida K (1998) Fabrication of silicon carbide fiber-reinforced silicon carbide composite by hot-pressing. Fusion Eng Des 41(1–4):157–163. doi:10.1016/S0920-3796(98)00094-5

    Article  CAS  Google Scholar 

  38. Lee SP, Katoh Y, Kohyama A (2001) Microstructure analysis and strength evaluation of reaction sintered SiC/SiC composites. Scr Mater 44(1):153–157. doi:10.1016/S1359-6462(00)00542-X

    Article  CAS  Google Scholar 

  39. Golecki I (1997) Rapid vapor-phase densification of refractory composites. Mater Sci Eng R20:37–124

    Google Scholar 

  40. Allendorf MD, Melius CF (1998) Understanding gas-phase reactions in the thermal CVD of hard coatings using computational methods. Surf Coat Tech 108/109:191–199. doi:10.1016/S0257-8972(98)00660-4

    Article  Google Scholar 

  41. Chase MW Jr (1998) NIST-JANAF thermochemical tables, fourth edition. J Phys Chem Ref Data Monograph No. 9

  42. Gurvich LV, Veyts IV, Alcock CB (1989) Thermodynamic properties of individual substances, 4th edn. Hemisphere Publishing, New York

    Google Scholar 

  43. National Standard Reference Data System (1982) The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data 11(Suppl 2)

  44. Yao XP, Su KH, Deng JL et al (2007) Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis. Comput Mater Sci 40:504–524. Erratum: Deng JL, Su KH, Yao XP et al (2008) Comput Mater Sci (in press). doi:10.1016/j.commatsci.2008.05.015

    Google Scholar 

  45. Deng J, Su K, Zeng Y et al (2008) Investigation of thermodynamic properties of gaseous SiC(X3Π and a1Σ) with accurate model chemistry calculations. Physica A 387(22):5440–5456

    Article  CAS  Google Scholar 

  46. Deng J, Su K, Wang X et al (2008) Thermodynamic properties of the most stable gaseous small silicon–carbon clusters in their ground states. Eur Phys J D 49:21–35

    Article  CAS  Google Scholar 

  47. Zeng Y, Su KH, Deng JL et al (2008) Thermodynamic investigation of the gas-phase reactions in the chemical vapor deposition of boron carbide with BCl3–CH4–H2 precursors. J Mol Struct Theochem 861(1–3):103–116. doi:10.1016/j.theochem.2008.04.016

    Article  CAS  Google Scholar 

  48. Su KH, Wei J, Hu XL et al (2000) Systematic comparison of geometry optimization on inorganic molecules. Acta Phys Chim Sin 16:643–651

    CAS  Google Scholar 

  49. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree–Fock, Møller–Plesset, quadratic configuration, density functional theory and semiempirical scale factor. J Chem Phys 100:16502–16513. doi:10.1021/jp960976r

    Article  CAS  Google Scholar 

  50. Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683–11700. doi:10.1021/jp073974n

    Article  CAS  Google Scholar 

  51. Petersilka M, Gossmann UJ, Gross EKU (1996) Excitation energies from time-dependent density-functional theory. Phys Rev Lett 76:1212–1215. doi:10.1103/PhysRevLett.76.1212

    Article  CAS  Google Scholar 

  52. Schmidt MW, Baldridge KK, Boatz JA et al (1993) General atomic molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  53. Wang YB, Zhai GH, Suo BB et al (2003) Hole–particle correspondence in CI calculations. Chem Phys Lett 375:134–140. doi:10.1016/S0009-2614(03)00849-2

    Article  CAS  Google Scholar 

  54. Wang YB, Suo BB, Zhai GH et al (2004) Doubly contracted CI method. Chem Phys Lett 389:315–320. doi:10.1016/j.cplett.2004.03.092

    Article  CAS  Google Scholar 

  55. Wang YB, Han HX, Zhai GH et al (2004) Doubly contracted CI method and applications. Sci China B 47:276–282. doi:10.1360/03yb0256

    Article  CAS  Google Scholar 

  56. Suo B, Zhai GH, Wang YB et al (2005) Parallelization of MRCI based on hole–particle symmetry. J Comput Chem 26:88–96. doi:10.1002/jcc.20148

    Article  CAS  Google Scholar 

  57. Gan Z, Su K, Wang Y et al (1999) A method to fast determine the coupling coefficients in CI calculations. Sci China B 42:43–52

    Article  CAS  Google Scholar 

  58. Curtiss LA, Redfern PC, Raghavachari K et al (1999) Gaussian-3 theory using reduced Møller–Plesset order. J Chem Phys 110:4703–4709. doi:10.1063/1.478385

    Article  CAS  Google Scholar 

  59. Baboul AG, Curtiss LA, Redfern PC et al (1999) Gaussian-3 theory using density functional geometries and zero-point energies. Chem Phys 110:7650–7657. doi:10.1063/1.478676

    CAS  Google Scholar 

  60. Curtiss LA, Raghavachari K, Redfern PC et al (1997) nt of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106:1063–1079. doi:10.1063/1.473182

    Article  CAS  Google Scholar 

  61. Curtiss LA, Redfern PC, Raghavachari K et al (1998) Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities. J Chem Phys 109:42–55. doi:10.1063/1.476538

    Article  CAS  Google Scholar 

  62. Su KH, Deakyne CA (1995) Review of the Gaussian-2 theory, its applications and the prediction of the enthalpy of formation. Prog Chem 7(2):128–139

    CAS  Google Scholar 

  63. Curtiss LA, Raghavachari K (1995) In: Langhoff SR (ed) Quantum mechanical electronic structure calculations with chemical accuracy, vol 139. Kluwer, Dordrecht

  64. Raghavachari K, Curtiss LA (1995) In: Yarkony DR (ed) Modern electronic structure theory, vol 991. World Scientific, Singapore

  65. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2003) Gaussian 03, Revision B.01. Gaussian Inc., Pittsburgh

  66. NIST chemistry webbook. Available at http://webbook.nist.gov/chemistry/

  67. Cox JD, Wagman DD, Medvedev VA (1989) CODATA key values for thermodynamics. Hemisphere Publishing, New York

    Google Scholar 

  68. Lide DR (ed) (1996/1997) CRC handbook of chemistry and physics, 77th edn. CRC Press, Boca Raton

  69. Lias SG, Bartmess JE, Liebman JF et al (1988) Gas-phase ion and neutral thermochemistry. J Phys Chem Ref Data 17 (Suppl 1)

  70. Zeng QF (2001) PhD thesis, Northwestern Polytechnical University

  71. Grev RS, Schaefer HF (1985) The ground state of Si3, two near degenerate isomers. Chem Phys Lett 119:111–118. doi:10.1016/0009-2614(85)80043-9

    Article  CAS  Google Scholar 

  72. Diercksen GHF, Grüner NE, Oddershede J et al (1985) The structure of Si2C and Si3. Chem Phys Lett 117:29–32. doi:10.1016/0009-2614(85)80398-5

    Article  CAS  Google Scholar 

  73. Balasubramanian K (1986) CAS SCF/CI calculations of low-lying states and potential energy surfaces of Si3. Chem Phys Lett 125:400–406. doi:10.1016/0009-2614(86)85180-6

    Article  CAS  Google Scholar 

  74. Slanina Z (1986) On thermodynamics of Si3(g) isomers. Chem Phys Lett 131:420–425. doi:10.1016/0009-2614(86)87178-0

    Article  CAS  Google Scholar 

  75. Lüthi HP, McLean AD (1987) Can the lowest two electronic states of Si2 be ordered? Chem Phys Lett 135:352–356. doi:10.1016/0009-2614(87)85170-9

    Article  Google Scholar 

  76. Langhoff SR, Davidson ER (1977) Int J Quantum Chem S11:149

    Google Scholar 

  77. Davidson ER, Feller D, McMarchie LE et al (1994) MELD. Indiana University, Bloomington

  78. Chase MW, Davies JCA, Downey JR et al (1985) J Phys Chem Ref Data 14(Suppl 1)

  79. Hildenbrand DL, Lau KH, Sanjuro A (2003) Experimental thermochemistry of the SiCl and SiBr radicals; enthalpies of formation of species in the Si–Cl and Si–Br systems. J Phys Chem A 107:5448–5451. doi:10.1021/jp022524m

    Article  CAS  Google Scholar 

  80. Weber ME, Armentrout PB (1989) Energetics and mechanisms in the reaction of Si+ with SiCl4. Thermochemistry of SiCl, SiCl+, and SiCl2 +. J Phys Chem 93:1596–1604. doi:10.1021/j100341a082

    Article  CAS  Google Scholar 

  81. Fisher ER, Armentrout PB (1991) Reactions of O2+, Ar+, Ne+, and He+ with SiCl4: thermochemistry of SiCl x +. J Phys Chem 95:4765–4772. doi:10.1021/j100165a032

    Article  CAS  Google Scholar 

  82. Zeng QF, Su KH, Zhang LT et al (2006) Evaluation of the thermodynamic data of CH3SiCl3 based on quantum chemistry calculations. J Phys Chem Ref Data 35:1385–1390. doi:10.1063/1.2201867

    Article  CAS  Google Scholar 

  83. Janoschek R, Rossi MJ (2004) Thermochemical properties from G3MP2B3 calculations, set-2: free radicals with special consideration of CH2=CH–C=CH2, cyclo-C5H5, CH2OOH, HO–CO, and HCOO. Int J Chem Kinet 36:661–686. doi:10.1002/kin.20035

    Article  CAS  Google Scholar 

  84. Janoschek R, Fabian WMF (2006) Enthalpies of formation of small free radicals and stable intermediates: interplay of experimental and theoretical values. J Mol Struct 780/781:80–86. doi:10.1016/j.molstruc.2005.04.050

    Article  CAS  Google Scholar 

  85. FactSage 5.4.1 (2006) Montreal, Quebec, Canada

  86. Xiao P, Xu YD, Huang BY (2002) Effects of deposition conditions on deposition thermodynamics and morphology of CVD-SiC. J Inorg Mater 17:877–881

    CAS  Google Scholar 

  87. Deng Q, Xiao P, Xiong X (2006) Effect of temperature on microstructure and composition of CVD SiC coating. Mater Sci Eng Powder Metall 11:305–309

    Google Scholar 

  88. Naslain R, Langlais F, Feou R (1989) The CVI-processing of ceramic matrix composites. J Phys 50:C5. 191–C5. 207

    Google Scholar 

  89. Jacoxa ME (2003) Vibrational and electronic energy levels of polyatomic transient molecules. J Phys Chem Ref Data Suppl B 32:1–441. doi:10.1063/1.1497629

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of the calculations was performed in the High Performance Computing Center of the Northwestern Polytechnical University. Supports by the National Natural Science Foundation of China (No. 50572089, No. 50642039) and the Chinese 973 Fundamental Research are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehe Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2008_478_MOESM1_ESM.doc

Supplement Material 1 Fundamental vibrational frequencies (cm−1) (scaled by 0.9573 [1]) and IR intensities (km·mole−1) calculated with B3PW91/6-31G(d) of the 163 molecules (DOC 183 kb)

214_2008_478_MOESM2_ESM.doc

Supplement Material 2 Heat capacity C θ p,m(298.15 K) and entropy S θm (298.15 K) predicted with standard statistical thermodynamicsa (DOC 156 kb)

Supplement Material 3 Polynomial (equation (5)a) fit of heat capacities for temperature in 298.15-2000 K (DOC 374 kb)

214_2008_478_MOESM4_ESM.doc

Supplement Material 4 G3(MP2) and G3//B3LYP energy (U 0 K), thermal correction to enthalpy (H corr) and to Gibbs free energy (G corr) (in Hartrees) at 298.15 Ka (DOC 308 kb)

214_2008_478_MOESM5_ESM.doc

Supplement Material 5 Δf H m Ө(298.15 K) and Δf G m Ө(298.15 K) of gaseous species predicted with G3//B3LYP theory (DOC 170 kb)

214_2008_478_MOESM6_ESM.doc

Supplement Material 6 U 0 K, thermal correction to enthalpy at 298.15 K, Δf H m Ө(298.15 K) of 14 Si m C n (3≤m+n≤6) clusters [1] predicted with G3//B3LYP theory (DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, J., Su, K., Wang, X. et al. Thermodynamics of the gas-phase reactions in chemical vapor deposition of silicon carbide with methyltrichlorosilane precursor. Theor Chem Account 122, 1–22 (2009). https://doi.org/10.1007/s00214-008-0478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0478-8

Keywords

Navigation