Theoretical Chemistry Accounts

, Volume 121, Issue 5–6, pp 271–278 | Cite as

The interconversion mechanism between TcO3+ and TcO2 + core of 99mTc labeled amine-oxime (AO) complexes

  • Hong-Mei Jia
  • De-Cai FangEmail author
  • Yan Feng
  • Jian-Ying Zhang
  • Wen-Bo Fan
  • Lin Zhu
Regular Article


Density functional theory, employing B3LYP/DZVP and B3LYP/6-31G*(LANL2DZ for Tc), has been used to investigate the interconversion mechanism between formal TcO3+ and TcO2 + core of 99mTc labeled amine-oxime (AO) complex, in which two water molecules have been used to simulate the possible interconversion process. The obtained results indicate that the length of amine-amine hydrocarbon backbone of AO ligand has a significant influence on the stabilities of formal TcO3+ and TcO2 + complex. The interconversion process between TcO–BnAO and TcO2–BnAO has been amply discussed, which releases the useful information for the further investigation of the structure and hypoxic mechanism of 99mTc-HL91.


Interconversion mechanism TcO3+ core TcO2+ core 99mTc-HL91 B3LYP 



This work is financially supported by the Research Fund for the Doctoral Program of Higher Education (no. 20040027011) and National Natural Science Foundation of China (nos. 20501004 and 20773016) and the High-Powered Computing Center of Beijing Normal University for partial CPU times.

Supplementary material

214_2008_474_MOESM1_ESM.pdf (260 kb)
MOESM1 (PDF 259 kb)


  1. 1.
    Jurisson S, Berning D, Jia W, Ma D (1993) Chem Rev 93:1137. doi: 10.1021/cr00019a013 CrossRefGoogle Scholar
  2. 2.
    Archer CM, Edwards B, Kelly JD, King AC, Burke JF, Riley ALM (1995) In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium and rhenium in chemistry and nuclear medicine. SGE Ditoriali, Padova, p 535Google Scholar
  3. 3.
    Imahashi K, Morishita K, Kusuoka H, Yamamichi Y, Hasegawa S, Hashimoto K et al (2000) J Nucl Med 41:1102Google Scholar
  4. 4.
    Honess DJ, Hill SA, Collingridge DR, Edwards R, Brauers G, Powell NA et al (1998) Int J Radiat Oncol Biol Phys 42:731. doi: 10.1016/S0360-3016(98)00300-9 Google Scholar
  5. 5.
    Zhang X, Melo T, Ballinger JR, Rauth AM (1998) Int J Radiat Oncol Biol Phys 42:737. doi: 10.1016/S0360-3016(98)00301-0 Google Scholar
  6. 6.
    Cook GJR, Houston S, Barrington SF, Fogelman I (1998) J Nucl Med 39:99Google Scholar
  7. 7.
    Yutani K, Kusuoka H, Fukuchi K, Tatsumi M, Nishimura T (1999) J Nucl Med 40:854Google Scholar
  8. 8.
    Tatsumi M, Yutani K, Kusuoka H, Nishimura T (1999) Eur J Nucl Med 26:91. doi: 10.1007/s002590050364 CrossRefGoogle Scholar
  9. 9.
    Fair CK, Troutner DE, Schlemper EO, Murmann RK, Hoppe ML (1984) Acta Crystallogr C 40:1544. doi: 10.1107/S0108270184008647 CrossRefGoogle Scholar
  10. 10.
    Jurisson S, Schlemper EO, Troutner DE, Canning LR, Nowotnik DP, Neirinckx RD (1986) Inorg Chem 25:543. doi: 10.1021/ic00224a031 CrossRefGoogle Scholar
  11. 11.
    Walker PS, Bergin PM, Grossel MC, Horton PN (2004) Inorg Chem 43:4145. doi: 10.1021/ic0497634 CrossRefGoogle Scholar
  12. 12.
    Jurisson S, Aston K, Fair CK, Schlemper EO, Sharp PR, Troutner DE (1987) Inorg Chem 26:3576. doi: 10.1021/ic00268a031 CrossRefGoogle Scholar
  13. 13.
    Cyr JE, Nowotnik DP, Pan Y, Gougoutas JZ, Malley MF, Marco JD et al (2001) Inorg Chem 40:3555. doi: 10.1021/ic991381o CrossRefGoogle Scholar
  14. 14.
    Brauers G, Archer CM, Burke JF (1997) Eur J Nucl Med 24:943Google Scholar
  15. 15.
    Becke AD (1993) J Chem Phys 98:5648. doi: 10.1063/1.464913 CrossRefGoogle Scholar
  16. 16.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785. doi: 10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  17. 17.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR (2004) Gaussian, Inc., Wallingford CT, Gaussian 03, Revision C.02Google Scholar
  18. 18.
    Bader RFW (1991) Chem Rev 91:893. doi: 10.1021/cr00005a013 CrossRefGoogle Scholar
  19. 19.
    Bader RFW (1990) Atoms in molecules: a quatum theory. Clarendon Press, OxfordGoogle Scholar
  20. 20.
    Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 70:560. doi: 10.1139/v92-079 CrossRefGoogle Scholar
  21. 21.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299. doi: 10.1063/1.448975 CrossRefGoogle Scholar
  22. 22.
    Ishida K, Morokuma K, Komornicki A (1977) J Chem Phys 66:2153. doi: 10.1063/1.434152 CrossRefGoogle Scholar
  23. 23.
    Gonzales C, Schlegel HB (1989) J Chem Phys 90:2154. doi: 10.1063/1.456010 CrossRefGoogle Scholar
  24. 24.
    Gonzales C, Schlegel HB (1990) J Chem Phys 94:5523. doi: 10.1021/j100377a021 CrossRefGoogle Scholar
  25. 25.
    Scott AP, Radom L (1996) J Phys Chem 100:16502. doi: 10.1021/jp960976r CrossRefGoogle Scholar
  26. 26.
    Young D (2001) Computational chemistry, a practical guide for applying techniques to real world problems. Willey-Interscience, New YorkGoogle Scholar
  27. 27.
    Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117. doi: 10.1016/0301-0104(81)85090-2 CrossRefGoogle Scholar
  28. 28.
    Miertus S, Tomasi J (1982) Chem Phys 65:239. doi: 10.1016/0301-0104(82)85072-6 CrossRefGoogle Scholar
  29. 29.
    Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327. doi: 10.1016/0009-2614(96)00349-1 CrossRefGoogle Scholar
  30. 30.
    Cances MT, Mennucci V, Tomasi J (1997) J Chem Phys 107:3032. doi: 10.1063/1.474659 CrossRefGoogle Scholar
  31. 31.
    Barone V, Cossi M, Mennucci B, Tomasi J (1997) J Chem Phys 107:3210. doi: 10.1063/1.474671 CrossRefGoogle Scholar
  32. 32.
    Cossi M, Barone V, Tomasi J (1998) Chem Phys Lett 286:253. doi: 10.1016/S0009-2614(98)00106-7 CrossRefGoogle Scholar
  33. 33.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995. doi: 10.1021/jp9716997 CrossRefGoogle Scholar
  34. 34.
    Bader RFW, Biegler-König FW, Cheeseman JR, Duke JA, Keith TA, Krug P et al (1994) AIMPAC (a set of programs for the theory of atoms in molecules). McMaster Univeristy, HamiltonGoogle Scholar
  35. 35.
    Biegler-König FW, Bader RFW, Tang TH (1982) J Comput Chem 3:317. doi: 10.1002/jcc.540030306 CrossRefGoogle Scholar
  36. 36.
    Fang DC, Tang TH (1998) AIM98PC (a modified PC version of AIMPAC). Beijing Normal University, BeijingGoogle Scholar
  37. 37.
    Biegler-König F, Schonbohm J, Bayles D (2001) J Comput Chem 22:545. doi :10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-YCrossRefGoogle Scholar
  38. 38.
    Biegler-König F, Schonbohm J (2002) J Comput Chem 23:1489. doi: 10.1002/jcc.10085 CrossRefGoogle Scholar
  39. 39.
    Ding WJ, Fang DC (2001) J Org Chem 66:6673. doi: 10.1021/jo010461i CrossRefGoogle Scholar
  40. 40.
    Wei MJ, Fang DC, Liu RZ (2002) J Org Chem 67:7432. doi: 10.1021/jo0258709 CrossRefGoogle Scholar
  41. 41.
    Yang SY, Sun CK, Fang DC (2002) J Org Chem 67:3841. doi: 10.1021/jo025575o CrossRefGoogle Scholar
  42. 42.
    Ding YQ, Fang DC (2003) J Org Chem 68:4382. doi: 10.1021/jo0340713 CrossRefGoogle Scholar
  43. 43.
    Zhang X, Melo T, Rauth AM, Ballinger JR (2001) Nucl Med Biol 28:949. doi: 10.1016/S0969-8051(01)00267-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Hong-Mei Jia
    • 1
  • De-Cai Fang
    • 1
    Email author
  • Yan Feng
    • 1
  • Jian-Ying Zhang
    • 1
  • Wen-Bo Fan
    • 1
  • Lin Zhu
    • 1
  1. 1.Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of ChemistryBeijing Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations