Advertisement

Theoretical Chemistry Accounts

, Volume 121, Issue 5–6, pp 239–246 | Cite as

Excited electronic and ionized states of the nitramide molecule, H2NNO2, studied by the symmetry-adapted-cluster configuration interaction method

  • Itamar BorgesJr.Email author
Regular Article

Abstract

Symmetry-adapted-cluster configuration interaction (SAC-CI) wave functions were employed to compute 16 singlet and 13 triplet vertical transitions, and 14 ionized states including relative intensities of the nitramide molecule, H2NNO2. This molecule is the simplest neutral closed-shell molecule which has an N–NO2 bond and is a member of the nitramine family, R,R′N(NO2), an important class of energetic materials with practical applications. The present nitramide results showed strong similarities with the ones of the N, N-dimethylnitramine molecule, which has also an N–NO2 bond and was previously studied using the SAC-CI method. Experimental ultraviolet and photoelectron band spectra of the nitramide molecule could be successfully assigned. All the singlet transitions have valence character. The computed singlet and triplet transitions, excepting a singlet one, result from excitation originating in the four highest occupied molecular orbitals, which have close energies. Most of the singlet and triplet transitions involved mixing of singly excited configurations. The strongest computed transition, at 6.8 eV, is a mixture of two nπNO2 → π* configurations corresponding to excitations from the highest occupied molecular orbital (HOMO) to the first two virtual orbitals and has an optical oscillator strength value of 0.2665. The computed ionized states described the whole measured spectrum, have excellent agreement when compared with the measured ionization potentials and revealed an inversion of the ordering of the first states not expected according to Koopmanns’ theorem, thereby showing the limitations of the latter.

Keywords

Nitramide, NH2NO2 SAC-CI wave functions Excited states Ionized states UV spectrum Photoelectron spectra Energetic materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Attina M, Cacace F, Ciliberto E, Depetris G, Grandinetti F, Pepi F et al (1993) J Am Chem Soc 115: 12398–12404 doi: 10.1021/ja00079a022 CrossRefGoogle Scholar
  2. 2.
    Harris LE (1973) J Chem Phys 58: 5615–5626 doi: 10.1063/1.1679185 CrossRefGoogle Scholar
  3. 3.
    Bernstein ER (2005) Role of excited electronic states in the decomposition of energetic materials. In: Shaw RW, Brill TB, Thompson DL (eds) Overviews of recent research on energetic materials. World Scientific, Singapore, p 161Google Scholar
  4. 4.
    Ali AN, Son SF, Asay BW, Sander RK (2005) J Appl Phys 97: 7 doi: 10.1063/1.1863428 CrossRefGoogle Scholar
  5. 5.
    Guo YQ, Greenfield M, Bhattacharya A, Bernstein ER (2007) J Chem Phys 127: 10Google Scholar
  6. 6.
    Borges I (2008) Chem Phys 349: 256–262CrossRefGoogle Scholar
  7. 7.
    Hodyss R, Beauchamp JL (2005) Anal Chem 77: 3607–3610 doi: 10.1021/ac050308e CrossRefGoogle Scholar
  8. 8.
    Arenas JF, Otero JC, Pelaez D, Soto J (2005) J Phys Chem A 109: 7172–7180 doi: 10.1021/jp058100k CrossRefGoogle Scholar
  9. 9.
    Haussler A, Klapotke TM, Piotrowski H (2002) Z Naturforsch B 57: 151–156Google Scholar
  10. 10.
    Stals J, Barraclo C, Buchanan AS (1969) Trans Faraday Soc 65: 904 doi: 10.1039/tf9696500904 CrossRefGoogle Scholar
  11. 11.
    Kaya K, Kuwata K, Nagakura S (1964) Bull Chem Soc Jpn 37: 1055–1061 doi: 10.1246/bcsj.37.1055 CrossRefGoogle Scholar
  12. 12.
    Nakatsuji H (1978) Chem Phys Lett 59: 362–364 doi: 10.1016/0009-2614(78)89113-1 CrossRefGoogle Scholar
  13. 13.
    Nakatsuji H, Hirao KJ (1978) Chem Phys 68: 2053–2065 doi: 10.1063/1.436028 Google Scholar
  14. 14.
    Nakatsuji H (1979) Chem Phys Lett 67: 329–333 doi: 10.1016/0009-2614(79)85172-6 CrossRefGoogle Scholar
  15. 15.
    Nakatsuji H (1979) Chem Phys Lett 67: 334–342 doi: 10.1016/0009-2614(79)85173-8 CrossRefGoogle Scholar
  16. 16.
    Borges I, Rocha AB, Bielschowsky CE (2005) Braz J Phys 35: 971–980 doi: 10.1590/S0103-97332005000600011 CrossRefGoogle Scholar
  17. 17.
    Martin RL, Shirley DA (1976) J Chem Phys 64: 3685–3689 doi: 10.1063/1.432679 CrossRefGoogle Scholar
  18. 18.
    Suzer S, Lee ST, Shirley DA (1976) Phys Rev A 13: 1842–1849 doi: 10.1103/PhysRevA.13.1842 CrossRefGoogle Scholar
  19. 19.
    Dunning TH, Hay PJ (1976) Modern theoretical chemistry. Plenum, New YorkGoogle Scholar
  20. 20.
    Koch WHA (2002) Chemist’s guide to density functional theory, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  21. 21.
    Becke AD (1993) J Chem Phys 98: 5648–5652 doi: 10.1063/1.464913 CrossRefGoogle Scholar
  22. 22.
    Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96: 6796–6806 doi: 10.1063/1.462569 CrossRefGoogle Scholar
  23. 23.
    Manaa MR, Fried LE (1999) J Phys Chem A 103: 9349–9354 doi: 10.1021/jp992460o CrossRefGoogle Scholar
  24. 24.
    de Souza GGB, Rocco MLM, Boechat-Roberty HM, Lucas CA, Borges I, Hollauer EJ (2001) Phys B At Mol Opt Phys 34: 1005–1017 doi: 10.1088/0953-4075/34/6/303 CrossRefGoogle Scholar
  25. 25.
    Ohtsuka Y, Piecuch P, Gour JR, Ehara M, Nakatsuji H (2007) J Chem Phys 126: 28 doi: 10.1063/1.2723121 CrossRefGoogle Scholar
  26. 26.
    Borges I (2006) Chem Phys 328: 284–290 doi: 10.1016/j.chemphys.2006.07.007 CrossRefGoogle Scholar
  27. 27.
    Borges IJ (2006) Phys B At Mol Opt Phys 39: 641–650 doi: 10.1088/0953-4075/39/3/017 CrossRefGoogle Scholar
  28. 28.
    Frisch MJ et al (2003) Gaussian 03. Revision C.02. Gaussian, PittsburghGoogle Scholar
  29. 29.
    Serrano-Andres L, Merchan M (2005) Theochem J Mol Struct 729: 99–108CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Departamento de QuímicaInstituto Militar de EngenhariaRio de JaneiroBrazil

Personalised recommendations