Advertisement

Theoretical Chemistry Accounts

, Volume 121, Issue 5–6, pp 227–237 | Cite as

Chemical reaction paths and calculus of variations

  • Wolfgang QuappEmail author
Regular Article

Abstract

The reaction path is an important concept of theoretical chemistry. We analyze different forms of reaction pathways in the light of the abstract theory of calculus of variations such as steepest descent from saddle point, the intrinsic reaction coordinate (IRC), Newton trajectory, variationally optimized reaction paths and others. The paper is both a mathematical review and a pointer to future research. Besides the theoretical definitions, we shortly discuss hints at the numerical effect of the definitions.

Keywords

Potential energy surface Variation of reaction pathways Euler equations Steepest descent Newton trajectory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laidler K (1969) Theory of reaction rates. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Miller W, Handy NC, Adams JE (1980) J Chem Phys 72: 99CrossRefGoogle Scholar
  3. 3.
    Mezey PG (1987) Potential energy hypersurfaces. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Heidrich D, Kliesch W, Quapp W (1991) Properties of chemically interesting potential energy surfaces. Lecture notes in chemistry, vol 56. Springer, BerlinGoogle Scholar
  5. 5.
    Heidrich D (1995) The reaction path in chemistry: current approaches and perspectives. Kluwer, DordrechtGoogle Scholar
  6. 6.
    Truhlar DG, Garrett BC (1980) Acc Chem Res 13: 440CrossRefGoogle Scholar
  7. 7.
    Quapp W, Heidrich D (1984) Theor Chim Acta 66: 245CrossRefGoogle Scholar
  8. 8.
    Quapp W, Hirsch M, Imig O, Heidrich D (1998) J Comput Chem 19: 1087CrossRefGoogle Scholar
  9. 9.
    Quapp W, Hirsch M, Heidrich D (1998) Theor Chem Acc 100: 285Google Scholar
  10. 10.
    Hirsch H, Quapp W, Heidrich D (1999) Phys Chem Chem Phys 1: 5291CrossRefGoogle Scholar
  11. 11.
    Crehuet R, Bofill JM (2005) J Chem Phys 122: 234105CrossRefGoogle Scholar
  12. 12.
    Aguilar-Mogas A, Crehuet R, Giménez X, Bofill JM (2007) Mol Phys 105: 2475CrossRefGoogle Scholar
  13. 13.
    Aguilar-Mogas A, Crehuet R, Bofill JM (2008) J Chem Phys 128: 104102CrossRefGoogle Scholar
  14. 14.
    Vanden-Eijnden E, Heymann M (2008) J Chem Phys 128: 061103CrossRefGoogle Scholar
  15. 15.
    Heymann M, Vanden-Eijnden E (2008) Comm Pure Appl Math 61: 1052CrossRefGoogle Scholar
  16. 16.
    Gelfand IM, Fomin SV (1991) Calculus of variations. Dover, MineolaGoogle Scholar
  17. 17.
    Olender R, Elber R (1997) J Mol Struc (Theochem) 63: 398Google Scholar
  18. 18.
    Stacho LL, Dömötör G, Ban MI (2000) J Math Chem 28: 241CrossRefGoogle Scholar
  19. 19.
    Williams IH, Maggiora GM (1982) J Mol Struct (Theochem) 89: 365CrossRefGoogle Scholar
  20. 20.
    Czerminski R, Elber R (1990) J Chem Phys 92: 5580CrossRefGoogle Scholar
  21. 21.
    Anglada JM, Besalu E, Bofill JM, Crehuet R (2001) J Comput Chem 22: 387CrossRefGoogle Scholar
  22. 22.
    Bofill JM, Anglada JM (2001) Theor Chem Acc 105: 463CrossRefGoogle Scholar
  23. 23.
    Crehuet R, Bofill JM, Anglada JM (2002) Theor Chem Acc 107: 130Google Scholar
  24. 24.
    Elber R, Karplus M (1987) Chem Phys Lett 139: 375CrossRefGoogle Scholar
  25. 25.
    Czerminski R, Elber R (1990) Int J Quantum Chem S24: 167CrossRefGoogle Scholar
  26. 26.
    Elber R (1996) In: Elber R (ed) Recent developments in theoretical studies of proteins. World Scientific, Singapore, p 65Google Scholar
  27. 27.
    Pratt LR (1986) J Chem Phys 85: 5045CrossRefGoogle Scholar
  28. 28.
    Basilevsky MV, Shamov AG (1981) Chem Phys 60: 337CrossRefGoogle Scholar
  29. 29.
    Basilevsky MV, Shamov AG (1981) Chem Phys 60: 347CrossRefGoogle Scholar
  30. 30.
    Hoffman DK, Nord RS, Ruedenberg K (1986) Theor Chim Acta 69: 265CrossRefGoogle Scholar
  31. 31.
    Quapp W (1989) Theor Chim Acta 75: 447CrossRefGoogle Scholar
  32. 32.
    Quapp W, Imig O, Heidrich D (1995) In: Heidrich D (ed) The reaction path in chemistry: current approaches and perspectives. Kluwer, Dordrecht, p 137Google Scholar
  33. 33.
    Sun J-Q, Ruedenberg K (1993) J Chem Phys 98: 9707CrossRefGoogle Scholar
  34. 34.
    Fukui K (1974) J Phys Chem 74: 4161CrossRefGoogle Scholar
  35. 35.
    Fukui K (1974) In: Daudel R, Pullman P (eds) The world of quantum chemistry. Dordrecht, Reidel, p 113Google Scholar
  36. 36.
    Garrett BC, Redmon MJ, Steckler R, Truhlar DG, Baldridge KK, Bartol D, Schmidt MW, Gordon MS (1988) J Phys Chem 92: 1476CrossRefGoogle Scholar
  37. 37.
    Jensen F (1995) J Chem Phys 102: 6706CrossRefGoogle Scholar
  38. 38.
    Quapp W, Hirsch M, Heidrich D (2000) Theor Chem Acc 105: 145Google Scholar
  39. 39.
    Quapp W, Kraka E, Cremer D (2007) J Phys Chem 111: 11287Google Scholar
  40. 40.
    Joo H, Kraka E, Quapp W, Cremer D (2007) Mol Phys 105: 2697CrossRefGoogle Scholar
  41. 41.
    Baboul AG, Schlegel HB (1997) J Chem Phys 107: 9413CrossRefGoogle Scholar
  42. 42.
    Fukui K (1970) J Phys Chem 74: 4161CrossRefGoogle Scholar
  43. 43.
    Tachibana A, Fukui K (1978) Theor Chim Acta 49: 321CrossRefGoogle Scholar
  44. 44.
    Schlegel HB (1994) J Chem Soc Faraday Trans 90: 1569CrossRefGoogle Scholar
  45. 45.
    Quapp W (1994) J Chem Soc Faraday Trans 90: 1607Google Scholar
  46. 46.
    Elber R, Karplus M (1999) Chem Phys Lett 311: 335CrossRefGoogle Scholar
  47. 47.
    Truhlar DG, Kupperman AJ (1971) J Am Chem Soc 93: 1840CrossRefGoogle Scholar
  48. 48.
    Carathéodory C (1935) Variationsrechnung und partielle Differentialgleichungen erster Ordnung. Teubner, Leipzig and BerlinGoogle Scholar
  49. 49.
    Quapp W (2003) J Theor Comput Chem 2: 385CrossRefGoogle Scholar
  50. 50.
    Steckler R, Truhlar DG (1990) J Chem Phys 93: 6570CrossRefGoogle Scholar
  51. 51.
    Ulitzky A, Elber R (1990) J Chem Phys 92: 1510CrossRefGoogle Scholar
  52. 52.
    Branin FH (1972) IBM J Res Develop 504Google Scholar
  53. 53.
    Jongen HT, Jonker P, Twilt F (1987) In: Guddat J et al (eds) Parametric optimization and related topics. Akademie, Berlin, p 209Google Scholar
  54. 54.
    Jongen HT (1990) In: Allgower EL, Georg K (eds) Computational solutions of nonlinear systems of equations. American Mathematical Society, Providence, p 317Google Scholar
  55. 55.
    Diener I, Schaback R (1990) J Optim Theory Appl 67: 87CrossRefGoogle Scholar
  56. 56.
    Diener I (1991) Globale Aspekte des kontinuierlichen Newton-Verfahrens. Habilitation, GöttingenGoogle Scholar
  57. 57.
    Hirsch M, Quapp W (2004) J Mol Struct (Theochem) 683: 1CrossRefGoogle Scholar
  58. 58.
    Hirsch M, Quapp W (2004) J Math Chem 36: 307CrossRefGoogle Scholar
  59. 59.
    Sevick EM, Bell AT, Theodorou DN (1993) J Chem Phys 98: 3196CrossRefGoogle Scholar
  60. 60.
    Kiełbasiński A, Schwetlick H (1988) Numerische Lineare Algebra. Deutscher Verl. Wiss., BerlinGoogle Scholar
  61. 61.
    Huo SH, Straub JE (1997) J Chem Phys 107: 5000CrossRefGoogle Scholar
  62. 62.
    Berkowitz M, Morgan JD, McCommon JD, Northrup SH (1983) J Chem Phys 79: 5563CrossRefGoogle Scholar
  63. 63.
    Levin Y, Nediak M, Ben-Israel A (2002) J Comput Appl Math 139: 197CrossRefGoogle Scholar
  64. 64.
    Chiu SS-L, McDouall JW, Hillier IH (1994) J Chem Soc Faraday Trans 90: 1575CrossRefGoogle Scholar
  65. 65.
    Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113: 9901CrossRefGoogle Scholar
  66. 66.
    Moré JJ, Munson TS (2004) Math Program Ser B 100: 151CrossRefGoogle Scholar
  67. 67.
    Jin C (2007) Commun Comput Phys 2: 1220Google Scholar
  68. 68.
    Pancíř S (1975) Collect Czech Chem Commun 40: 1112Google Scholar
  69. 69.
    Rowe DJ, Ryman A (1982) J Math Phys 23: 732CrossRefGoogle Scholar
  70. 70.
    Schlegel HB (1992) Theor Chim Acta 83: 21CrossRefGoogle Scholar
  71. 71.
    Hirsch M, Quapp W (2004) Chem Phys Lett 395: 150CrossRefGoogle Scholar
  72. 72.
    Quapp W, Hirsch M, Heidrich D (2004) Theor Chim Acta 112: 40Google Scholar
  73. 73.
    Reddy CK, Chiang H-D (2006) J Comput Biol 13: 745CrossRefGoogle Scholar
  74. 74.
    Maxwell JC (1870) Philos Mag 40: 421Google Scholar
  75. 75.
    Ruedenberg K, Sun J-Q (1994) J Chem Phys 100: 5836CrossRefGoogle Scholar
  76. 76.
    Heidrich D, Quapp W (1986) Theor Chim Acta 70: 89CrossRefGoogle Scholar
  77. 77.
    Kim H-W, Zeroka D (2008) Int J Quantum Chem 108: 974CrossRefGoogle Scholar
  78. 78.
    Quapp W (2008) J Theor Comput Chem (in press)Google Scholar
  79. 79.
    Taketsugu T, Hirano T (1997) J Chem Phys 107: 10506CrossRefGoogle Scholar
  80. 80.
    Park S, Sener MK, Lu D, Schulten K (2003) J Chem Phys 119: 1313CrossRefGoogle Scholar
  81. 81.
    Jiménez A, Crehuet R (2007) Theor Chem Acc 108: 769CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of LeipzigLeipzigGermany

Personalised recommendations