Advertisement

Theoretical Chemistry Accounts

, Volume 121, Issue 5–6, pp 219–225 | Cite as

On the mechanism of the OH initiated oxidation of acetylene in the presence of O2 and NO x

  • Annia GalanoEmail author
  • Luis Gerardo Ruiz-Suárez
  • Annik Vivier-Bunge
Regular Article

Abstract

The mechanism of the oxidation of acetylene, in the presence of O2 and NO x , has been studied. Different levels of theory have been tested for the first step of the mechanism: the acetylene + OH radical reaction. Based on these results the meta-hybrid functional MPWB1K has been chosen for modeling all the other steps involved in the oxidation of acetylene. Different reaction paths have been considered and the one leading to glyoxal formation and OH regeneration is predicted to be the main channel, independently of the presence of NO x . Two different mechanisms were modeled to account for formic acid formation, both of them involving cyclic intermediates. According to the computed activation free energies, the three-membered intermediate seems to be more likely to occur than the four-membered one. However, reaction barriers are very high and only a very small proportion of formic acid is expected to be formed through such intermediates. In the presence of NO x , considered in this work for the first time, the main product of the tropospheric oxidation of acetylene is also expected to be glyoxal.

Keywords

Acetylene Oxidation OH NOx O2 DFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greenberg JP, Zimmerman PR, Heidt L, Pollock W (1984) J Geophys Res 89: 1350. doi: 10.1029/JD089iD01p01350 CrossRefGoogle Scholar
  2. 2.
    Greenberg JP, Zimmerman PR (1984) J Geophys Res 89: 4767. doi: 10.1029/JD089iD03p04767 CrossRefGoogle Scholar
  3. 3.
    Hegg DA, Radke LF, Hobbs PV, Rasmussen RA, Riggan PJ (1990) J Geophys Res 95: 5669. doi: 10.1029/JD095iD05p05669 CrossRefGoogle Scholar
  4. 4.
    Blake NJ, Blake DR, Sive BC, Rowland FS, Collins JE Jr, Sachse GW et al (1996) J Geophys Res 101: 24151. doi: 10.1029/96JD00561 CrossRefGoogle Scholar
  5. 5.
    Stephens ER, Burleson FR (1967) J Air Pollut Control Assoc 17: 147Google Scholar
  6. 6.
    Fraser MP, Cass GR, Simoneit BR (1998) Environ Sci Technol 32: 2051. doi: 10.1021/es970916e CrossRefGoogle Scholar
  7. 7.
    Calvert JG, Atkinson R, Kerr JA, Madronich S, Moortgat GK, Wallington TJ et al (2000) The Mechanisms of Atmospheric Oxidation of the Alkenes. Oxford University Press, New YorkGoogle Scholar
  8. 8.
    Carter WPL (1994) J Air Waste Manage Assoc 44: 881Google Scholar
  9. 9.
    Sorenson M, Kaiser EW, Hurley D, Wallington TJ, Nielsen O (2003) Int J Chem Kinet 35: 191. doi: 10.1002/kin.10119 CrossRefGoogle Scholar
  10. 10.
    Schmidt V, Zhu GY, Becker KH, Fink EH (1985) Ber Bunsenges Phys Chem 89: 321Google Scholar
  11. 11.
    Hatakeyama S, Washida N, Akimoto H (1986) J Phys Chem 90: 173. doi: 10.1021/j100273a039 CrossRefGoogle Scholar
  12. 12.
    Siese M, Zetzsch C (1995) Z Phys Chem 188: 75Google Scholar
  13. 13.
    Bohn B, Zetzsch C (1998) J Chem Soc, Faraday Trans 94: 1203. doi: 10.1039/a708536b CrossRefGoogle Scholar
  14. 14.
    Yeung LY, Pennino MJ, Miller AM, Elrod MJ (2005) J Phys Chem A 109: 1879. doi: 10.1021/jp0454671 CrossRefGoogle Scholar
  15. 15.
    Carpenter BK (1995) J Phys Chem 99: 9801. doi: 10.1021/j100024a022 CrossRefGoogle Scholar
  16. 16.
    Maranzana A, Barker JR, Tonachini G (2008) . J Phys Chem A, ASAP Article. doi: 10.1021/jp077180k
  17. 17.
    Maranzana A, Ghigo G, Tonachini G, Barker JR (2008) J Phys Chem A, ASAP Article. doi: 10.1021/jp077174o
  18. 18.
    Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc., WallingfordGoogle Scholar
  19. 19.
    Siegbahn PEM, Blomberg MRA (1999) Ann Rev Phys Chem 50: 221CrossRefGoogle Scholar
  20. 20.
    Ziegler T (1991) Chem Rev 91: 651CrossRefGoogle Scholar
  21. 21.
    Fernandez-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG (2006) Chem Rev 106: 4518. doi: 10.1021/cr050205w CrossRefGoogle Scholar
  22. 22.
    Zhao Y, Truhlar DG (2004) J Phys Chem A 108: 6908CrossRefGoogle Scholar
  23. 23.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2: 364CrossRefGoogle Scholar
  24. 24.
    Zhao Y, Truhlar DG (2005) J Phys Chem A 109: 5656CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Truhlar DG (2005) J Chem Theory Comput 1: 415CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Gonzalez-Garcia N, Truhlar DG (2005) J Phys Chem A 109: 2012CrossRefGoogle Scholar
  27. 27.
    Atkinson R, Baulch DL, Cox RA, Hampson RF, Kerr JA, Rossi MJ, Troe J (1997) J Phys Chem Ref Data 26: 521CrossRefGoogle Scholar
  28. 28.
    DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE, Molina MJ (1997) JPL Publication 97: 1Google Scholar
  29. 29.
    Full D, Hamann HF, Hippler H, Jansch CP (1997) Ber Bunsenges Phys Chem 101: 1433Google Scholar
  30. 30.
    Garrett BC, Truhlar DG, Grev RS, Magnuson AW (1980) J Phys Chem 84: 1730CrossRefGoogle Scholar
  31. 31.
    Garrett BC, Truhlar DG, Grev RS, Magnuson AW (1983) J Phys Chem 87: 4554(E)Google Scholar
  32. 32.
    Issacson AD, Truhlar DG (1982) J Chem Phys 76: 1380CrossRefGoogle Scholar
  33. 33.
    Isaacson AD, Sund MT, Rai SN, Truhlar DG (1985) J Chem Phys 82: 1338CrossRefGoogle Scholar
  34. 34.
    Skodje RT, Truhlar DG, Garrett BC (1981) J Phys Chem 85: 3019CrossRefGoogle Scholar
  35. 35.
    Liu YP, Lynch GC, Truong TN, Lu D, Truhlar DG (1993) J Am Chem Soc 115: 2408CrossRefGoogle Scholar
  36. 36.
    Corchado JC, Chuang YY, Fast PL, Villa J, Hu WP, Liu YP, Lynch GC, Nguyen KA, Jackels CF, Melissas VS, Lynch BJ, Rossi I, Coitino EL, Fernandez-Ramos A, Ellingson BA, Pu J, Albu TV, Zheng J, Steckler R, Garrett BC, Isaacson AD, Truhlar, DG (2007) POLYRATE, Version 9.7, University of Minnesota, MinneapolisGoogle Scholar
  37. 37.
    Kim Y, Corchado JC, Villa J, Xing X, Truhlar DG (2000) J Chem Phys 112: 2718CrossRefGoogle Scholar
  38. 38.
    Albu TV, Tishchenko O, Corchado JC, Kim Y, Villa J, Xing J, Lin H, Truhlar DG (2007) MC-TINKERATE; Version P9.1, University of Minnesota, MinneapolisGoogle Scholar
  39. 39.
    Dennington R, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2003) GaussView, Version 2.0, Semichem Inc., Shawnee MissionGoogle Scholar
  40. 40.
    Finlayson-Pitts BJ, Pitts JN (1986) Atmospheric chemistry: fundamentals and experimental techniques. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Annia Galano
    • 1
    Email author
  • Luis Gerardo Ruiz-Suárez
    • 2
  • Annik Vivier-Bunge
    • 1
  1. 1.Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaMexico D.F.Mexico
  2. 2.Centro de Ciencias de la AtmósferaUniversidad Nacional Autónoma de MéxicoMexico D.F.Mexico

Personalised recommendations