Skip to main content
Log in

Prediction of NMR order parameters in proteins using weighted protein contact-number model

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In the NMR experiment, the protein backbone motion can be described by the N–H order parameters. Though protein dynamics is determined by a complex network of atomic interactions, we show that the order parameter of residues can be determined using a very simple method, the weighted protein contact number model. We computed for each Cα atom the number of neighboring Cα atoms weighted by the inverse distance squared between them. We show that the weighted contact number of each residue is directly related to its order parameter. Despite the simplicity of this model, it performs better than the other method. Since we can compute the order parameters directly from the topological properties (such as protein contact number) of protein structures, our study underscores a very direct link between protein topological structure and its dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang LW, Bahar I (2005) Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes. Structure 13: 893–904

    Article  Google Scholar 

  2. Mukherjee M, Dutta K, White MA, Cowburn D, Fox RO (2006) NMR solution structure and backbone dynamics of domain III of the E protein of tick-borne Langat flavivirus suggests a potential site for molecular recognition. Protein Sci 15: 1342–1355

    Article  CAS  Google Scholar 

  3. Warshel A (2002) Molecular dynamics simulations of biological reactions. Acc Chem Res 35: 385–395

    Article  CAS  Google Scholar 

  4. Berman H, Henrick K, Nakamura H, Markley JL (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35: D301–303

    Article  CAS  Google Scholar 

  5. Levitt M, Warshel A (1975) Computer simulation of protein folding. Nature 253: 694–698

    Article  CAS  Google Scholar 

  6. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267: 585–590

    Article  CAS  Google Scholar 

  7. Warshel A (1976) Bicycle-pedal model for the first step in the vision process. Nature 260: 679–683

    Article  CAS  Google Scholar 

  8. Warshel A, Parson WW (2001) Dynamics of biochemical and biophysical reactions: insight from computer simulations. Q Rev Biophys 34: 563–679

    CAS  Google Scholar 

  9. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9: 646–652

    Article  CAS  Google Scholar 

  10. Showalter SA, Bruschweiler R (2007) Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: application to the AMBER99SB force field. J Chem Theory Comput 3: 961–975

    Article  CAS  Google Scholar 

  11. Rueda M, Ferrer-Costa C, Meyer T, Perez A, Camps J, Hospital A, Gelpi JL, Orozco M (2007) A consensus view of protein dynamics. Proc Natl Acad Sci USA 104: 796–801

    Article  CAS  Google Scholar 

  12. Zhang F, Bruschweiler R (2002) Contact model for the prediction of NMR N–H order parameters in globular proteins. J Am Chem Soc 124: 12654–12655

    Article  CAS  Google Scholar 

  13. Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77: 1905–1908

    Article  CAS  Google Scholar 

  14. Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2: 173–181

    Article  CAS  Google Scholar 

  15. Ming D, Bruschweiler R (2006) Reorientational contact-weighted elastic network model for the prediction of protein dynamics: comparison with NMR relaxation. Biophys J 90: 3382–3388

    Article  CAS  Google Scholar 

  16. Pfeiffer S, Fushman D, Cowburn D (2001) Simulated and NMR-derived backbone dynamics of a protein with significant flexibility: a comparison of spectral densities for the betaARK1 PH domain. J Am Chem Soc 123: 3021–3036

    Article  CAS  Google Scholar 

  17. Tjandra N, Feller SE, Pastor RW, Bax A (1995) Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J Am Chem Soc 117: 12562–12566

    Article  CAS  Google Scholar 

  18. Buck M, Boyd J, Redfield C, MacKenzie DA, Jeenes DJ, Archer DB, Dobson CM (1995) Structural determinants of protein dynamics: analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme. Biochemistry 34: 4041–4055

    Article  CAS  Google Scholar 

  19. Harata K, Muraki M (1997) X-ray structure of turkey-egg lysozyme complex with tri-N-acetylchitotriose. Lack of binding ability at subsite A. Acta Crystallogr D Biol Crystallogr 53: 650–657

    Article  CAS  Google Scholar 

  20. Akke M, Skelton NJ, Kordel J, Palmer AG 3rd, Chazin WJ (1993) Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation. Biochemistry 32: 9832–9844

    Article  CAS  Google Scholar 

  21. Svensson LA, Thulin E, Forsen S (1992) Proline cis-trans isomers in calbindin D9k observed by X-ray crystallography. J Mol Biol 223: 601–606

    Article  CAS  Google Scholar 

  22. Feng W, Tejero R, Zimmerman DE, Inouye M, Montelione GT (1998) Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site. Biochemistry 37: 10881–10896

    Article  CAS  Google Scholar 

  23. Li Q, Khosla C, Puglisi JD, Liu CW (2003) Solution structure and backbone dynamics of the holo form of the frenolicin acyl carrier protein. Biochemistry 42: 4648–4657

    Article  CAS  Google Scholar 

  24. Halle B (2002) Flexibility and packing in proteins. Proc Natl Acad Sci USA 99: 1274–1279

    Article  CAS  Google Scholar 

  25. Kristensen SM, Siegal G, Sankar A, Driscoll PC (2000) Backbone dynamics of the C-terminal SH2 domain of the p85[alpha] subunit of phosphoinositide 3-kinase: effect of phosphotyrosine-peptide binding and characterization of slow conformational exchange processes. J Mol Biol 299: 771–788

    Article  CAS  Google Scholar 

  26. Yun S, Jang DS, Kim DH, Choi KY, Lee HC (2001) 15N NMR relaxation studies of backbone dynamics in free and steroid-bound Delta 5-3-ketosteroid isomerase from Pseudomonas testosteroni. Biochemistry 40: 3967–3973

    Article  CAS  Google Scholar 

  27. Stivers JT, Abeygunawardana C, Mildvan AS (1996) 15N NMR relaxation studies of free and inhibitor-bound 4-oxalocrotonate tautomerase: backbone dynamics and entropy changes of an enzyme upon inhibitor binding. Biochemistry 35: 16036–16047

    Article  CAS  Google Scholar 

  28. Redfield C, Boyd J, Smith LJ, Smith RA, Dobson CM (1992) Loop mobility in a four-helix-bundle protein: 15N NMR relaxation measurements on human interleukin-4. Biochemistry 31: 10431–10437

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, SW., Shih, CH., Lin, CP. et al. Prediction of NMR order parameters in proteins using weighted protein contact-number model. Theor Chem Account 121, 197–200 (2008). https://doi.org/10.1007/s00214-008-0465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0465-0

Keywords

Navigation