Advertisement

Theoretical Chemistry Accounts

, Volume 120, Issue 4–6, pp 375–383 | Cite as

Electric field response of molecular reactivity descriptors: a case study

  • Rahul Kar
  • Sourav PalEmail author
Regular Article

Abstract

In the present article, we study the influence of external electric field on the density-based global and local reactivity descriptors using examples of some planar nonlinear polyatomic molecules with C 2V point group symmetry. The study mainly involves the application of weak electric field in a direction along the principal axis and along its perpendicular direction. We also discuss the strength of the electric field studied in this work in terms of the strength of the molecular interaction. The work is expected to throw light on the effect of interactions within the above range on reactivity descriptors. Results are presented for a few prototype molecules.

Keywords

Reactivity descriptors Electric field Planar nonlinear polyatomic molecules Molecular interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kar R, Chandrakumar KRS, Pal S (2007) J Phys Chem A 111: 375CrossRefGoogle Scholar
  2. 2.
    Rico JF, Lopez R, Ema I, Ramirez G (2002) J Chem Phys 116: 1788CrossRefGoogle Scholar
  3. 3.
    Dykstra CE (2001) J Mol Struct THEOCHEM 573: 63CrossRefGoogle Scholar
  4. 4.
    Buckingham AD, Fowler PW, Hutson JM (1988) Chem Rev 88: 963CrossRefGoogle Scholar
  5. 5.
    Perez P, Contreras R, Aizman A (1996) Chem Phys Lett 260: 236CrossRefGoogle Scholar
  6. 6.
    Perez P, Contreras R, Aizman A (1997) J Mol Struct THEOCHEM 290: 169CrossRefGoogle Scholar
  7. 7.
    Tomasi J, Perisco M (1994) Chem Rev 94: 2027CrossRefGoogle Scholar
  8. 8.
    Suresh SJ, Prabhu AL, Arora A (2007) J Chem Phys 126: 134502CrossRefGoogle Scholar
  9. 9.
    Kreuzer HJ, Wang LC (1990) J Chem Phys 93: 6065CrossRefGoogle Scholar
  10. 10.
    Ernst N, Drachset W, Li Y, Block JH (1986) Phys Rev Lett 57: 2686CrossRefGoogle Scholar
  11. 11.
    Bragiel P (1992) Surf Sci. 266: 35CrossRefGoogle Scholar
  12. 12.
    Cerveau G, Corriu RJP, Framery E, Ghosh S, Nobili M (2002) Angew Chem Int Ed 41: 594CrossRefGoogle Scholar
  13. 13.
    Pethica BA (1998) Langmuir 14: 3115CrossRefGoogle Scholar
  14. 14.
    Hochstrasser RM (1973) Acc Chem Res 6: 263CrossRefGoogle Scholar
  15. 15.
    Eckert M, Zundel G (1987) J Phys Chem 91: 5170CrossRefGoogle Scholar
  16. 16.
    Eckert M, Zundel G (1988) J Phys Chem 92: 7016CrossRefGoogle Scholar
  17. 17.
    Hill TL (1958) J Am Chem Soc 80: 2142CrossRefGoogle Scholar
  18. 18.
    Hobza P, Hofmann H, Zahradhik R (1983) J Phys Chem 87: 573CrossRefGoogle Scholar
  19. 19.
    Xu D, Phillips JC, Schulten K (1996) J Phys Chem 100: 12108CrossRefGoogle Scholar
  20. 20.
    Lippard S J, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books. Mill Valley, CAGoogle Scholar
  21. 21.
    Choi YC, Pak C, Kim KS (2006) J Chem Phys 124: 94308CrossRefGoogle Scholar
  22. 22.
    Cohende Lara E, Kahn R, Seloudoux R (1985) J Chem Phys 83: 2646CrossRefGoogle Scholar
  23. 23.
    Cohende Lara E, Kahn R (1981) J Phys (Paris) 42: 1029Google Scholar
  24. 24.
    Chandrakumar KRS, Pal S, Goursot A, Vetrivel R (1999) In: Murugesan V, Arabindoo B, Palanichamy M (eds) Recent trends in catalysis. Narosa Publishing House, New DelhiGoogle Scholar
  25. 25.
    Cohende Lara E, Kahn R (1984) J Phys Lett 45: 255CrossRefGoogle Scholar
  26. 26.
    Li P, Xiang Y, Grassian VH, Larsen SC (1999) J Phys Chem B 103: 5058CrossRefGoogle Scholar
  27. 27.
    Bordiga S, Garrone E, Lamberti C, Zecchina A, Arean C, Kazansky V, Kustov L (1994) J Phys Chem 90: 3367Google Scholar
  28. 28.
    Ferrari AM, Ugliengo P, Garrone E (1996) J Chem Phys 105: 4129CrossRefGoogle Scholar
  29. 29.
    Gruver V, Fripiat JJ (1994) J Phys Chem 98: 8549CrossRefGoogle Scholar
  30. 30.
    Olivera PP, Patrito EM (1998) Electrochim Acta 44: 1247CrossRefGoogle Scholar
  31. 31.
    Parr R G, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  32. 32.
    Yang W, Mortier WJ (1986) J Am Chem Soc 108: 5708CrossRefGoogle Scholar
  33. 33.
    Mineva T (2006) J Mol Struct THEOCHEM 762: 79CrossRefGoogle Scholar
  34. 34.
    Ponti A (2000) J Phys Chem A 104: 8843CrossRefGoogle Scholar
  35. 35.
    Molteni G, Ponti A (2003) Chem Eur J 9: 2770CrossRefGoogle Scholar
  36. 36.
    Mineva T, Heine T (2004) J Phys Chem A 108: 11086CrossRefGoogle Scholar
  37. 37.
    Roy RK (2003) J Phys Chem A 107: 397CrossRefGoogle Scholar
  38. 38.
    Chatterjee A, Iwasaki T, Ebina T (2000) J Phys Chem A 104: 8216CrossRefGoogle Scholar
  39. 39.
    Chandra AK, Nguyen MT (2007) Faraday Discussions 135: 191CrossRefGoogle Scholar
  40. 40.
    Nguyen HMT, Peeters J, Nguyen MT, Chandra AK (2004) J Phys Chem A 108: 484CrossRefGoogle Scholar
  41. 41.
    Melin J, Aparicio F, Subramanian V, Galvan M, Chattaraj PK (2004) J Phys Chem A 108: 2487CrossRefGoogle Scholar
  42. 42.
    Shetty S, Kar R, Kanhere DG, Pal S (2006) J Phys Chem A 110: 252CrossRefGoogle Scholar
  43. 43.
    Roy RK, Chandra AK, Pal S (1994) J Phys Chem 98: 10447CrossRefGoogle Scholar
  44. 44.
    Pal S, Chandra AK, Roy RK (1994) J Mol Struct THEOCHEM 307: 99CrossRefGoogle Scholar
  45. 45.
    Chattaraj PK, Poddar A (1998) J Phys Chem A 102: 9944CrossRefGoogle Scholar
  46. 46.
    Chattaraj PK, Poddar A (1999) 103:1274Google Scholar
  47. 47.
    Chattaraj PK, Maiti B (2001) J Phys Chem A 105: 169CrossRefGoogle Scholar
  48. 48.
    Madjarova G, Tadjer A, Cholakova T P, Dobrev A A, Mineva T (2005) J Phys Chem A 109: 387CrossRefGoogle Scholar
  49. 49.
    Santos J C, Contreras R, Chamorro E, Fuentealba P (2002) J Chem Phys 116: 4311CrossRefGoogle Scholar
  50. 50.
    Jaque P, Toro-Labbe A (2002) J Chem Phys 117: 3208CrossRefGoogle Scholar
  51. 51.
    Mineva T, Russo N, Sicila E, Toscano M (1999) Theor Chem Acc 101: 388Google Scholar
  52. 52.
    Mendez F, Tamaiz J, Geerlings P (1998) J Phys Chem A 102: 6292CrossRefGoogle Scholar
  53. 53.
    Damoun S, Van de Woude, Choho K, Geerlings P (1999) J Phys Chem A 103: 7861CrossRefGoogle Scholar
  54. 54.
    Romero ML, Mendez F (2003) J Phys Chem A 107: 5874CrossRefGoogle Scholar
  55. 55.
    Mendez F, Garcýa-Garibay MA (1999) J Org Chem 64: 7061CrossRefGoogle Scholar
  56. 56.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103: 1793CrossRefGoogle Scholar
  57. 57.
    Anderson JSM, Melin J, Ayers PW (2007) J Chem Theory Comp 3: 375CrossRefGoogle Scholar
  58. 58.
    Ayers PW, Parr RG (2000) J Am Chem Soc 122: 2010CrossRefGoogle Scholar
  59. 59.
    Ayers PW, Parr RG (2001) J Am Chem Soc 123: 2007CrossRefGoogle Scholar
  60. 60.
    Pal S, Chandrakumar KRS (2000) J Am Chem Soc 122: 4145CrossRefGoogle Scholar
  61. 61.
    Mendez F, Gazquez JL (1994) J Am Chem Soc 116: 9298CrossRefGoogle Scholar
  62. 62.
    Chandrakumar KRS, Pal S (2001) J Phys Chem B 105: 4541CrossRefGoogle Scholar
  63. 63.
    Chandrakumar KRS, Pal S (2002) J Phys Chem A 106: 5737CrossRefGoogle Scholar
  64. 64.
    Chandrakumar KRS, Pal S (2002) J Phys Chem A 106: 11775CrossRefGoogle Scholar
  65. 65.
    Chandrakumar KRS, Pal S (2002) Colloids Surf A 205: 127CrossRefGoogle Scholar
  66. 66.
    Chandrakumar KRS, Pal S (2002) Int J Mol Sci 2: 324Google Scholar
  67. 67.
    Parthasarathi R, Subramanian V, Chattaraj PK (2003) Chem Phys Lett 382: 48CrossRefGoogle Scholar
  68. 68.
    Lipinski J, Komorowski L (1996) Chem Phys Lett 262: 449CrossRefGoogle Scholar
  69. 69.
    Sivanesan D, Amutha R, Subramanian V, Nair BU, Ramasami T (1999) Chem Phys Lett 308: 223CrossRefGoogle Scholar
  70. 70.
    Safi B, Choho K, De Proft F, Geerlings P (1998) J Phys Chem A 102: 5253CrossRefGoogle Scholar
  71. 71.
    Fuentealba P, Perez P, Contreras R (2000) J Chem Phys 113: 2544CrossRefGoogle Scholar
  72. 72.
    Geerlings P, De Proft F (2002) Int J Mol Sci 3: 276CrossRefGoogle Scholar
  73. 73.
    Balawender R, Safi B, Geerlings P (2001) J Phys Chem A 105: 6703CrossRefGoogle Scholar
  74. 74.
    Balawender R, Safi B, Geerlings P (2001) J Phys Chem A 105: 11102CrossRefGoogle Scholar
  75. 75.
    Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) J Phys Chem 110: 2739Google Scholar
  76. 76.
    Fuentealba P, Cedillo A (1999) J Chem Phys 110: 9867CrossRefGoogle Scholar
  77. 77.
    Hohenberg K, Kohn W (1964) Phys Rev B 136: 864CrossRefGoogle Scholar
  78. 78.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105: 7512CrossRefGoogle Scholar
  79. 79.
    Pearson RG (1985) J Am Chem Soc 107: 6801CrossRefGoogle Scholar
  80. 80.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68: 3801CrossRefGoogle Scholar
  81. 81.
    Parr RG, Yang W (1984) J Am Chem Soc 106: 4049CrossRefGoogle Scholar
  82. 82.
    Yang W, Parr RG (1985) Proc Natl Acad Sci 82: 6723CrossRefGoogle Scholar
  83. 83.
    Perdew JP, Parr RG, Levy M, Balduz JL (1982) Phys Rev Lett 49: 1691CrossRefGoogle Scholar
  84. 84.
    Zhang Y, Yang W (2000) Theor Chem Acc 103: 346Google Scholar
  85. 85.
    Yang W, Mortier WJ (1986) J Am Chem Soc 108: 5708CrossRefGoogle Scholar
  86. 86.
    For a review, see: Bachrach SM (1995) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. vol V. VCH, New YorkGoogle Scholar
  87. 87.
    Lowdin PO (1953) J Chem Phys 21: 374CrossRefGoogle Scholar
  88. 88.
    Lowdin PO (1950) J Chem Phys 18: 365CrossRefGoogle Scholar
  89. 89.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14: 1347CrossRefGoogle Scholar
  90. 90.
    Senet P (1996) J Chem Phys 105: 6471CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Physical Chemistry DivisionNational Chemical LaboratoryPuneIndia

Personalised recommendations