Advertisement

Theoretical Chemistry Accounts

, Volume 120, Issue 4–6, pp 325–336 | Cite as

Ab initio characterization of XH3 (X=N, P). I. Ammonia, phosphine and their related ions and radicals: structure and thermochemistry

  • Cristina PuzzariniEmail author
Regular Article

Abstract

Ammonia, phosphine and their related cations, anions and radicals have been investigated at a high level of accuracy. The singles and doubles coupled cluster method including a perturbational correction for connected triple excitations, CCSD(T), in conjunction with correlation consistent basis sets ranging in size from triple to sextuple zeta have been employed. Extrapolation to the complete basis set limit has been used with accurate treatments of core–valence correlation effects in order to accurately predict structures, ionization potentials, electron affinities as well as N–H and P–H bond dissociation energies. For all the species studied, harmonic vibrational frequencies have also been evaluated in order to obtain zero-point corrections.

Keywords

Ab initio calculations Equilibrium structure Ammonia Phosphine Radicals and ions Thermochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Endres CP, Müller HSP, Brünken S, Paveliev DG, Giesen TF, Schlemmer S, Lewen F (2006) J Mol Struct 795: 242CrossRefGoogle Scholar
  2. 2.
    Cazzoli G, Puzzarini C (2006) J Mol Spectrosc 239: 64CrossRefGoogle Scholar
  3. 3.
    Wilson TL, Henkel C, Hüttemeister S (2006) Astron Astrophys 460: 533CrossRefGoogle Scholar
  4. 4.
    Turner BE (1991) Astrophys J 376: 573CrossRefGoogle Scholar
  5. 5.
    Haworth NL, Bacskay GB (2002) J Chem Phys 117: 11175CrossRefGoogle Scholar
  6. 6.
    Gan Z, Su K, Wang Y, Wen Z (1998) Chem Phys 228: 31CrossRefGoogle Scholar
  7. 7.
    Gil A, Bertran J, Sodupe M (2003) J Am Chem Soc 125: 7461CrossRefGoogle Scholar
  8. 8.
    Jursic BS (1999) J Mol Struct THEOCHEM 487: 193CrossRefGoogle Scholar
  9. 9.
    Werner H-J, Knowles PJ (1985) J Chem Phys 82: 5053CrossRefGoogle Scholar
  10. 10.
    Knowles PJ, Werner H-J (1985) Chem Phys Lett 115: 259CrossRefGoogle Scholar
  11. 11.
    Lee TJ, Taylor PR (1989) Int J Quantum Chem Symp 23: 199Google Scholar
  12. 12.
    Lee TJ, Scuseria GE (1995) In Quantum mechanical electronic structure calculations with chemical accuracy, Langhoff SR (ed) Kluwer, Dordrecht, p 47Google Scholar
  13. 13.
    Purvis GD, Bartlett RJ (1982) J Chem Phys 76: 1910CrossRefGoogle Scholar
  14. 14.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 156: 479CrossRefGoogle Scholar
  15. 15.
    Hampel C, Peterson KA, Werner HJ (1992) Chem Phys Lett 190: 1CrossRefGoogle Scholar
  16. 16.
    Scuseria GE (1991) Chem Phys Lett 176: 27CrossRefGoogle Scholar
  17. 17.
    Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98: 8718CrossRefGoogle Scholar
  18. 18.
    Knowles PJ, Hampel C, Werner H-J (1994) J Chem Phys 99: 5219CrossRefGoogle Scholar
  19. 19.
    Dunning TH Jr, Peterson KA, Wilson AK (2001) J Chem Phys 114: 9244CrossRefGoogle Scholar
  20. 20.
    Dunning TH Jr (1989) J Chem Phys 90: 1007CrossRefGoogle Scholar
  21. 21.
    Eckert F, Pulay P, Werner H-J (1997) J Comp Chem 18: 1473CrossRefGoogle Scholar
  22. 22.
    El Azhary A, Rauhut G, Pulay P, Werner H-J (1998) J Chem Phys 108: 5185CrossRefGoogle Scholar
  23. 23.
    Helgaker T, Klopper W, Koch H, Noga J (1997) J Chem Phys 106: 9639CrossRefGoogle Scholar
  24. 24.
    Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286: 243CrossRefGoogle Scholar
  25. 25.
    Feller D (1992) J Chem Phys 96: 6104CrossRefGoogle Scholar
  26. 26.
    Feller D (1993) J Chem Phys 98: 7059CrossRefGoogle Scholar
  27. 27.
    Peterson KA, Woon DE, Dunning TH Jr (1994) J Chem Phys 100: 7410CrossRefGoogle Scholar
  28. 28.
    Feller D, Peterson KA (1999) J Chem Phys 110: 8384CrossRefGoogle Scholar
  29. 29.
    Peterson KA, Dunning TH Jr (2002) J Chem Phys 117: 10548CrossRefGoogle Scholar
  30. 30.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96: 6796CrossRefGoogle Scholar
  31. 31.
    Wang D, Shi Q, Zhu QS (2000) J Chem Phys 112: 924Google Scholar
  32. 32.
    Dixon DA, Feller D, Peterson KA (2001) J Chem Phys 115: 2576CrossRefGoogle Scholar
  33. 33.
    Boese AD, Oren M, Atasoylu O, Martin JML, Kállay M, Gauss J (2004) J Chem Phys 120: 4129CrossRefGoogle Scholar
  34. 34.
    Léonard C, Carter S, Handy NC (2002) Phys Chem Chem Phys 4: 4087CrossRefGoogle Scholar
  35. 35.
    Demaison J, Margulés L, Boggs J (2003) Phys Chem Chem Phys 5: 3359CrossRefGoogle Scholar
  36. 36.
    Woywod C, Scharte S, Krawczyk R, Domcke W, Köppel H (2003) J Chem Phys 118: 5880CrossRefGoogle Scholar
  37. 37.
    Yurchenko SN, Zheng J, Lin H, Jensen P, Thiel W (2005) J Chem Phys 123: 134308CrossRefGoogle Scholar
  38. 38.
    Grant DJ, Dixon DA (2005) J Phys Chem A 109: 10138CrossRefGoogle Scholar
  39. 39.
    Coriani S, Marchesan D, Gauss J, Hättig C, Jørgensen P, Helgaker T (2005) J Chem Phys 123: 184107CrossRefGoogle Scholar
  40. 40.
    Jakubk ZJ, Bunker PR, Zachwieja M, Nakhate SG, Simard B, Yurchenko SN, Thiel W, Jensen P (2006) J Chem Phys 124: 094306CrossRefGoogle Scholar
  41. 41.
    Heckert M, Kállay M, Tew DP, Klopper W, Gauss J (2006) J Chem Phys 125: 044108CrossRefGoogle Scholar
  42. 42.
    Tajti A, Szalay PG, Császár AG, Kállay M, Gauss J, Valeev EF, Flowers BA, Vásquez J, Stanton JF (2004) J Chem Phys 121: 11599CrossRefGoogle Scholar
  43. 43.
    Duncan JL, Mills IM (1964) Spectrosc Chem Acta 20: 523CrossRefGoogle Scholar
  44. 44.
    Pawłowski F, Jørgensen P, Olsen J, Hegelund F, Helgaker T, Gauss J, Bak KL, Stanton JS (2002) J Chem Phys 116: 6482CrossRefGoogle Scholar
  45. 45.
    Helms DA, Gordy W (1977) J Mol Spectrosc 66: 206CrossRefGoogle Scholar
  46. 46.
    Cané E, Fusina L, Bürger H, Jerzembeck W, Brünken S, Lewen F, Winnewisser G (2002) J Mol Spectrosc 215: 1CrossRefGoogle Scholar
  47. 47.
    Bawendi MG, Rehfuss BD, Dinelli BM, Okumura M, Oka T (1989) J Chem Phys 90: 5910CrossRefGoogle Scholar
  48. 48.
    Demaison J, Margulés L, Boggs JE (2000) Chem Phys 260: 65CrossRefGoogle Scholar
  49. 49.
    Crofton MW, Oka T (1983) J Chem Phys 79: 3157CrossRefGoogle Scholar
  50. 50.
    Kobayashi K, Ozeki H, Saito S, Tonooka M, Yamamoto S (1997) J Chem Phys 107: 9289CrossRefGoogle Scholar
  51. 51.
    Pesonen J, Miani A, Halonen L (2001) J Chem Phys 115: 1243CrossRefGoogle Scholar
  52. 52.
    Pelzer S, Wichmann K, Wasendrup R, Schwerdtfeger P (2002) J Phys Chem 106A: 6387Google Scholar
  53. 53.
    Spirko V, Kraemer WP (1989) J Mol Spectrosc 133: 331CrossRefGoogle Scholar
  54. 54.
    Creve S, Nguyen MT (1998) J Phys Chem 102A: 6549Google Scholar
  55. 55.
    Maksic ZM, Vianello R (2002) J Phys Chem 106A: 6515Google Scholar
  56. 56.
    Zhan CG, Nichols GA, Dixon DA (2003) J Phys Chem 107: 4184Google Scholar
  57. 57.
    Swart M, Rösler E, Bickelhaupt FM (2006) J Comp Chem 27: 1486CrossRefGoogle Scholar
  58. 58.
    Wright JS, Rowley CN, Chepelev LL (2005) Mol Phys 103: 815CrossRefGoogle Scholar
  59. 59.
    DiLabio GA, Pratt DA, LoFaro AD, Wright JS (1999) J Phys Chem 103A: 1653Google Scholar
  60. 60.
    Lias SG, Liebman JF, Levine RD (1984) J Phys Chem Ref Data 13: 695CrossRefGoogle Scholar
  61. 61.
    Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levine RD, Mallad WG (1988) J Phys Chem Ref Data 17:suppl. 1Google Scholar
  62. 62.
    Koppel IA, Schwesinger R, Breuer T, Burk P, Herodes K, Koppel I, Leito I, Mishima (2001) J Phys Chem 105A:9575Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dipartimento di Chimica “G. Ciamician”Università di BolognaBolognaItaly

Personalised recommendations