Protein–protein recognition: a computational mutagenesis study of the MDM2–P53 complex

Abstract

Protein P53 is involved in more than 50% of the human cancers and the P53–MDM2 complex is a target for anticancer drug design. It is possible to engineer small P53 mimics that would be expected to disrupt the P53–MDM2 complex, and release P53 to initiate cell-cycle arrest or apoptosis. These small peptides should bind to the functional epitopes of the protein–protein interface, and prevent the interaction between P53 and MDM2. Here, we apply an improved computational alanine scanning mutagenesis method, which allows the determination of the hot spots present in both monomers, P53 and MDM2, of three protein complexes (the P53-binding domain of human MDM2, its analogue from Xenopus laevis, and the structure of human MDM2 in complex with an optimized P53 peptide). The importance of the hydrogen bonds formed by the protein backbone has been neglected due to the difficulty of measuring experimentally their contribution to the binding free energy. In this study we present a computational approach that allows the estimation of the contribution to the binding free energy of the C=O and N–H groups in the backbone of the P53 and MDM2 proteins. We have noticed that the hydrogen bond between the HE1 atom of the hot spot Trp23 and the O atom of the residue Leu54, as well as the NH-pi hydrogen bond between the Ile57 and Met58 were observed in the Molecular dynamics simulation, and their contribution to the binding free energy measured. This study not only shows the reliability of the computational mutagenesis method to detect hot spots but also demonstrates an excellent correlation between the quantitative calculated binding free energy contribution of the C=O and N–H backbone groups of the interfacial residues and the qualitative values expected for this kind of interaction. The study also increases our understanding of the P53–MDM2 interaction.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Science 274: 948–953

    Article  CAS  Google Scholar 

  2. 2

    Chène P (2004) Mol Cancer Res 2: 20–28

    Google Scholar 

  3. 3

    Soussi T, Dehouche K, Beroud C (2000) Hum Mutat 2: 105–213

    Article  Google Scholar 

  4. 4

    Chi CW, Lee SH, Do-Hyoung K, Min-Jung A, Jae-Sung K, Jin-Young W, Takuya T, Masatsune K, Kyou-Hoon H (2005) J Biol Chem 280: 38795–38802

    Article  CAS  Google Scholar 

  5. 5

    Welburn JPI, Endicott JA (2005) Sem Cell Devel Biol 16: 369–381

    Article  CAS  Google Scholar 

  6. 6

    Mateu MG, Fersht A (1998) EMBO J 17: 2748–2758

    Article  CAS  Google Scholar 

  7. 7

    Picksley SM, Lane DP (1993) Bioessays 2: 689–690

    Article  Google Scholar 

  8. 8

    Wu X, Bayle JH, Olson D, Levine AJ (1993) Genes Dev 2: 1126–1132

    Article  Google Scholar 

  9. 9

    Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) Cell 2: 1237–1245

    Article  Google Scholar 

  10. 10

    Zhong H, Carlson HA (2005) Proteins 58: 222–234

    Article  CAS  Google Scholar 

  11. 11

    Lu F, Chi SW, kim DH, Han KH, kuntz ID, Guy RK (2006) J Comb Chem 8: 315–325

    Article  CAS  Google Scholar 

  12. 12

    Grasberger BL, Schubert C, Koblish HK, Carver TE, Franks CF, Zhao SY, Lu T, LaFrance LV, Parks DJ (2005) J Med Chem 48: 909–912

    Article  CAS  Google Scholar 

  13. 13

    Massova M, Kollman PA (1999) J Am Chem Soc 121: 36

    Article  Google Scholar 

  14. 14

    Bottger A, Bottger V, Garcia-Echeverria C, Chene P, Hochkeppel HK, Sampson W, Ang K, Howard SF, Picksley SM, Lane DP (1997) J Mol Biol 269: 744–756

    Article  CAS  Google Scholar 

  15. 15

    Ma B, Nussinov R (2207) Curr Top Med Chem 7: 999–1005

    Article  Google Scholar 

  16. 16

    DeLano WL, Ultsch MH, de Vos AM, Wells JA (2000) Science 287: 1279–1283

    Article  CAS  Google Scholar 

  17. 17

    Bogan AA, Thorn KS (1998) J Mol Biol 280: 1–9

    Article  CAS  Google Scholar 

  18. 18

    Ma B, Wolfson HJ, Nussinov R (2001) Curr Opin Struct Biol 11: 364–369

    Article  CAS  Google Scholar 

  19. 19

    Moreira IS, Fernandes PA, Ramos MJ (2006) Proteins 63: 811–21

    Article  CAS  Google Scholar 

  20. 20

    Moreira IS, Fernandes PA, Ramos MJ (2006) J Phys Chem B 110: 10962–10969

    Article  CAS  Google Scholar 

  21. 21

    Moreira IS, Fernandes PA, Ramos MJ (2007) 117:99–113

  22. 22

    Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz HM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) AMBER 8, University of California, San Francisco

  23. 23

    Tsui V, Case DA (2001) Biopolymers (Nucl Acid Sci) 56: 275–291

    Article  CAS  Google Scholar 

  24. 24

    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr., Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117: 5179–5197

    Article  CAS  Google Scholar 

  25. 25

    Ryckaert JP, Ciccotti G, Berendsen HJ (1977) J Comput Phys 23: 327–335

    Article  CAS  Google Scholar 

  26. 26

    Pastor RW, Brooks BR, Szabo A (1988) Mol Phys 65: 1409–1419

    Article  Google Scholar 

  27. 27

    Loncharich RJ, Brooks BR, Pastor RW (1992) Biopolymers 32: 523–535

    Article  CAS  Google Scholar 

  28. 28

    Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD (2001) J Chem Phys 114: 2090–2098

    Article  CAS  Google Scholar 

  29. 29

    Huo S, Massova I, Kollman PA (2002) J Comput Chem 23: 15–27

    Article  CAS  Google Scholar 

  30. 30

    Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002) J Comp Chem 23: 128–137

    Article  CAS  Google Scholar 

  31. 31

    Rocchia W, Alexov E, Honig B (2001) J Phys Chem B 105: 6507–6514

    Article  CAS  Google Scholar 

  32. 32

    Moreira IS, Fernandes PA, Ramos MJ (2005) J Mol Struct (Theochem) 729: 11–18

    Article  CAS  Google Scholar 

  33. 33

    Connolly ML (1983) J Appl Cryst 16: 548–558

    Article  CAS  Google Scholar 

  34. 34

    Gohlke H, Case DA (2004) J Comput Chem 25: 238–250

    Article  CAS  Google Scholar 

  35. 35

    Xu D, Tsai CJ, Nussinov R (1997) Protein Eng 10: 999–1012

    Article  CAS  Google Scholar 

  36. 36

    Biot C, Buisine E,Kwasigroch JM,Wintiens R, RoomanM (2002) 277:40816–40822 (1997)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria J. Ramos.

Additional information

Contribution to the Nino Russo Special Issue.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moreira, I.S., Fernandes, P.A. & Ramos, M.J. Protein–protein recognition: a computational mutagenesis study of the MDM2–P53 complex. Theor Chem Account 120, 533–542 (2008). https://doi.org/10.1007/s00214-008-0432-9

Download citation

Keywords

  • Alanine scanning mutagenesis
  • MM-PBSA
  • Hot spot
  • Bindingfree energy
  • Protein-protein interface
  • Molecular mechanics
  • P53
  • MDM2
  • Mutagenesis
  • Backbone hydrogen bond