Theoretical Chemistry Accounts

, Volume 120, Issue 4–6, pp 533–542 | Cite as

Protein–protein recognition: a computational mutagenesis study of the MDM2–P53 complex

  • Irina S. Moreira
  • Pedro A. Fernandes
  • Maria J. RamosEmail author
Regular Article


Protein P53 is involved in more than 50% of the human cancers and the P53–MDM2 complex is a target for anticancer drug design. It is possible to engineer small P53 mimics that would be expected to disrupt the P53–MDM2 complex, and release P53 to initiate cell-cycle arrest or apoptosis. These small peptides should bind to the functional epitopes of the protein–protein interface, and prevent the interaction between P53 and MDM2. Here, we apply an improved computational alanine scanning mutagenesis method, which allows the determination of the hot spots present in both monomers, P53 and MDM2, of three protein complexes (the P53-binding domain of human MDM2, its analogue from Xenopus laevis, and the structure of human MDM2 in complex with an optimized P53 peptide). The importance of the hydrogen bonds formed by the protein backbone has been neglected due to the difficulty of measuring experimentally their contribution to the binding free energy. In this study we present a computational approach that allows the estimation of the contribution to the binding free energy of the C=O and N–H groups in the backbone of the P53 and MDM2 proteins. We have noticed that the hydrogen bond between the HE1 atom of the hot spot Trp23 and the O atom of the residue Leu54, as well as the NH-pi hydrogen bond between the Ile57 and Met58 were observed in the Molecular dynamics simulation, and their contribution to the binding free energy measured. This study not only shows the reliability of the computational mutagenesis method to detect hot spots but also demonstrates an excellent correlation between the quantitative calculated binding free energy contribution of the C=O and N–H backbone groups of the interfacial residues and the qualitative values expected for this kind of interaction. The study also increases our understanding of the P53–MDM2 interaction.


Alanine scanning mutagenesis MM-PBSA Hot spot Bindingfree energy Protein-protein interface Molecular mechanics P53 MDM2 Mutagenesis Backbone hydrogen bond 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Science 274: 948–953CrossRefGoogle Scholar
  2. 2.
    Chène P (2004) Mol Cancer Res 2: 20–28Google Scholar
  3. 3.
    Soussi T, Dehouche K, Beroud C (2000) Hum Mutat 2: 105–213CrossRefGoogle Scholar
  4. 4.
    Chi CW, Lee SH, Do-Hyoung K, Min-Jung A, Jae-Sung K, Jin-Young W, Takuya T, Masatsune K, Kyou-Hoon H (2005) J Biol Chem 280: 38795–38802CrossRefGoogle Scholar
  5. 5.
    Welburn JPI, Endicott JA (2005) Sem Cell Devel Biol 16: 369–381CrossRefGoogle Scholar
  6. 6.
    Mateu MG, Fersht A (1998) EMBO J 17: 2748–2758CrossRefGoogle Scholar
  7. 7.
    Picksley SM, Lane DP (1993) Bioessays 2: 689–690CrossRefGoogle Scholar
  8. 8.
    Wu X, Bayle JH, Olson D, Levine AJ (1993) Genes Dev 2: 1126–1132CrossRefGoogle Scholar
  9. 9.
    Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) Cell 2: 1237–1245CrossRefGoogle Scholar
  10. 10.
    Zhong H, Carlson HA (2005) Proteins 58: 222–234CrossRefGoogle Scholar
  11. 11.
    Lu F, Chi SW, kim DH, Han KH, kuntz ID, Guy RK (2006) J Comb Chem 8: 315–325CrossRefGoogle Scholar
  12. 12.
    Grasberger BL, Schubert C, Koblish HK, Carver TE, Franks CF, Zhao SY, Lu T, LaFrance LV, Parks DJ (2005) J Med Chem 48: 909–912CrossRefGoogle Scholar
  13. 13.
    Massova M, Kollman PA (1999) J Am Chem Soc 121: 36CrossRefGoogle Scholar
  14. 14.
    Bottger A, Bottger V, Garcia-Echeverria C, Chene P, Hochkeppel HK, Sampson W, Ang K, Howard SF, Picksley SM, Lane DP (1997) J Mol Biol 269: 744–756CrossRefGoogle Scholar
  15. 15.
    Ma B, Nussinov R (2207) Curr Top Med Chem 7: 999–1005CrossRefGoogle Scholar
  16. 16.
    DeLano WL, Ultsch MH, de Vos AM, Wells JA (2000) Science 287: 1279–1283CrossRefGoogle Scholar
  17. 17.
    Bogan AA, Thorn KS (1998) J Mol Biol 280: 1–9CrossRefGoogle Scholar
  18. 18.
    Ma B, Wolfson HJ, Nussinov R (2001) Curr Opin Struct Biol 11: 364–369CrossRefGoogle Scholar
  19. 19.
    Moreira IS, Fernandes PA, Ramos MJ (2006) Proteins 63: 811–21CrossRefGoogle Scholar
  20. 20.
    Moreira IS, Fernandes PA, Ramos MJ (2006) J Phys Chem B 110: 10962–10969CrossRefGoogle Scholar
  21. 21.
    Moreira IS, Fernandes PA, Ramos MJ (2007) 117:99–113Google Scholar
  22. 22.
    Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz HM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) AMBER 8, University of California, San FranciscoGoogle Scholar
  23. 23.
    Tsui V, Case DA (2001) Biopolymers (Nucl Acid Sci) 56: 275–291CrossRefGoogle Scholar
  24. 24.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr., Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117: 5179–5197CrossRefGoogle Scholar
  25. 25.
    Ryckaert JP, Ciccotti G, Berendsen HJ (1977) J Comput Phys 23: 327–335CrossRefGoogle Scholar
  26. 26.
    Pastor RW, Brooks BR, Szabo A (1988) Mol Phys 65: 1409–1419CrossRefGoogle Scholar
  27. 27.
    Loncharich RJ, Brooks BR, Pastor RW (1992) Biopolymers 32: 523–535CrossRefGoogle Scholar
  28. 28.
    Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD (2001) J Chem Phys 114: 2090–2098CrossRefGoogle Scholar
  29. 29.
    Huo S, Massova I, Kollman PA (2002) J Comput Chem 23: 15–27CrossRefGoogle Scholar
  30. 30.
    Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002) J Comp Chem 23: 128–137CrossRefGoogle Scholar
  31. 31.
    Rocchia W, Alexov E, Honig B (2001) J Phys Chem B 105: 6507–6514CrossRefGoogle Scholar
  32. 32.
    Moreira IS, Fernandes PA, Ramos MJ (2005) J Mol Struct (Theochem) 729: 11–18CrossRefGoogle Scholar
  33. 33.
    Connolly ML (1983) J Appl Cryst 16: 548–558CrossRefGoogle Scholar
  34. 34.
    Gohlke H, Case DA (2004) J Comput Chem 25: 238–250CrossRefGoogle Scholar
  35. 35.
    Xu D, Tsai CJ, Nussinov R (1997) Protein Eng 10: 999–1012CrossRefGoogle Scholar
  36. 36.
    Biot C, Buisine E,Kwasigroch JM,Wintiens R, RoomanM (2002) 277:40816–40822 (1997)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Irina S. Moreira
    • 1
  • Pedro A. Fernandes
    • 1
  • Maria J. Ramos
    • 1
    Email author
  1. 1.REQUIMTE/Departamento de QuímicaFaculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations