Advertisement

Theoretical Chemistry Accounts

, Volume 120, Issue 4–6, pp 411–419 | Cite as

Ligand binding properties of cobalamins

  • Dorota Rutkowska-Zbik
  • Malgorzata WitkoEmail author
  • Grazyna Stochel
Regular Article

Abstract

The main goal of the present density functional theory calculations is a comparative study of NO, O2, \({{\rm NO}_{2}^{-}}\) , and H2O binding to different forms of cob(II)alamins and cob(III)alamins. The comparison of binding energies of small ligands enables one to draw conclusions regarding the stability of the studied derivatives of cobalamins as well as to define the preferred form of cobalamin for each ligand. Ligands such as NO and O2 favor cob(II)alamins, while H2O and \({{\rm NO}_{2}^{-}}\) cob(III)alamins. The obtained results are confronted with available experimental data. Finally, our findings allow one to divide the studied small ligands into two groups: NO and O2 for which the coordination to cobalamins significantly weakens their internal bonds, and \({{\rm NO}_{2}^{-}}\) and H2O for which the effect is not observed.

Keywords

Bioinorganic chemistry Cobalamins Density functional calculations Ligand binding Nitrogen oxides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banerjee R (1999) Chemistry and biochemistry of B12. Wiley, New YorkGoogle Scholar
  2. 2.
    Jensen KP, Sauer SPA, Liljefors T, Norrby P-O (2001) Organometallics 123: 550–556CrossRefGoogle Scholar
  3. 3.
    Jensen KP, Ryde U (2002) J Mol Struc (Theochem) 585: 239–255CrossRefGoogle Scholar
  4. 4.
    Jensen KP, Ryde U (2003) ChemBioChem 4: 413–424CrossRefGoogle Scholar
  5. 5.
    Jensen KP, Ryde U (2003) J Phys Chem A 107: 7539–7545CrossRefGoogle Scholar
  6. 6.
    Jensen KP, Ryde U (2003) J Am Chem Soc 125: 13970–13971CrossRefGoogle Scholar
  7. 7.
    Andruniow T, Zgierski MZ, Kozłowski PM (2001) J Am Chem Soc 123: 2679–2680CrossRefGoogle Scholar
  8. 8.
    Andruniow T, Zgierski MZ, Kozłowski PM (2000) J Phys Chem B 104: 10921–1092CrossRefGoogle Scholar
  9. 9.
    Andruniow T, Zgierski MZ, Kozłowski PM (2000) Chem Phys Lett 331: 509–512CrossRefGoogle Scholar
  10. 10.
    Andruniow T, Zgierski MZ, Kozlowski PM (2002) J Phys Chem A 106: 1365–1373CrossRefGoogle Scholar
  11. 11.
    Dolker N, Maseras F, Lledos A (2001) J Phys Chem B 105: 7564–7571CrossRefGoogle Scholar
  12. 12.
    Dolker N, Morreale A, Maseras F (2005) J Biol Inorg Chem 10: 509–517CrossRefGoogle Scholar
  13. 13.
    Bayston JH, King NK, Looney FD, Winfield ME (1969) J Am Chem Soc 91: 2775–2779CrossRefGoogle Scholar
  14. 14.
    Ellis J, Pratt MJ, Green M (1973) J Chem Soc, Chem Commun 781–782Google Scholar
  15. 15.
    Wolak M, Stochel G, Hamza M, van Eldik R (2000) Inorg Chem 39: 2018–2019CrossRefGoogle Scholar
  16. 16.
    Wolak M, Zahl A, Schneppensieper T, Stochel G, van Eldik R (2001) J Am Chem Soc 123: 9780–9791CrossRefGoogle Scholar
  17. 17.
    Zheng D, Birke RL (2001) J Am Chem Soc 123: 4637–4638CrossRefGoogle Scholar
  18. 18.
    Zheng D, Birke RL (2002) J Am Chem Soc 124: 9066–9067CrossRefGoogle Scholar
  19. 19.
    Chamulirat W, Chamulirat W, Ferruzzi G, Sauls DL, Weinberg JB (1996) Blood 88: 1857–1864Google Scholar
  20. 20.
    Kruszyna H, Magyar JS, Rochelle LG, Russel MA, Smith RP, Wilcox DE (1998) J Pharmacol Exp Ther 285: 665–671Google Scholar
  21. 21.
    Selcuki C, van Eldik R, Clark T (2004) Inorg Chem 43: 2828–2833CrossRefGoogle Scholar
  22. 22.
    Rutkowska-Zbik D, Jaworska M, Witko M (2004) Struct Chem 15: 431–435CrossRefGoogle Scholar
  23. 23.
    Hermann K, Pettersson LGM, Casida ME, Daul C, Goursot A, Koester A, Proynov E, St-Amant A, Salahub DR, Contributing authors: Carravetta V, Duarte H, Godbout N, Guan J, Jamorski C, Leboeuf M, Malkin V, Malkina O, Nyberg M, Pedocchi L, Sim F, Triguero L, Vela A (2004) StoBe-deMon version 2.0, StoBe SoftwareGoogle Scholar
  24. 24.
    Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Phys 70: 560–571Google Scholar
  25. 25.
    Labanowski JK, Andzelm J (1991) Density functional methods in chemistry. Springer, New YorkGoogle Scholar
  26. 26.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58: 1200–1211CrossRefGoogle Scholar
  27. 27.
    Mayer I (1983) Chem Phys Lett 97: 270–274CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77: 3865–3868CrossRefGoogle Scholar
  29. 29.
    Hammer B, Hansen LB, Norskov JK (1998) Phys Rev B 59: 7413–7421CrossRefGoogle Scholar
  30. 30.
    Cooper CE (1999) Biochim Biophys Acta 1411: 290–309CrossRefGoogle Scholar
  31. 31.
    Hohenester E, Kratky C, Krautler B (1991) J Am Chem Soc 113: 4523–4530CrossRefGoogle Scholar
  32. 32.
    Joerin E, Schweiger A, Gunthard HH (1983) J Am Chem Soc 105: 4277–4286CrossRefGoogle Scholar
  33. 33.
    Van Doorslaer S, Shweiger A, Krautler B (2001) J Phys Chem B 105: 7554–7563CrossRefGoogle Scholar
  34. 34.
    Perry CB, Fernandes MA, Brown KL, Zou X, Valente EJ, Marques HM (2003) Eur J Inorg Chem 2095–2107Google Scholar
  35. 35.
    Koryta J, Dvorak J, Bohackova V (1975) Lehrbuch der Elektrochemie. Springer, HeidelbergGoogle Scholar
  36. 36.
    Ahlrichs R, Baer M, Haeser M, Hoern H, Koelmel C (1989) Chem Phys Lett 162: 165CrossRefGoogle Scholar
  37. 37.
    Kratky C, Farber G, Gruber K, Wilson K, Dauter Z, Nolting H-F, Konrat R, Krautler B (1995) J Am Chem Soc 117: 4654–4670CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Dorota Rutkowska-Zbik
    • 1
  • Malgorzata Witko
    • 1
    Email author
  • Grazyna Stochel
    • 2
  1. 1.Institute of Catalysis and Surface ChemistryPolish Academy of SciencesKrakowPoland
  2. 2.Faculty of ChemistryJagiellonian UniversityKrakowPoland

Personalised recommendations