Skip to main content

Advertisement

Log in

Zn7Cu6: a magic cluster of brass?

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory was applied to a series of 13-atom Zn–Cu alloy clusters. We did a thorough search for the low-energy isomers by global optimization, plus explicit optimization of all homotops of the icosahedron. Structures of copper rich clusters tend to be compact, often icosahedra, whereas zinc rich clusters (\({{\rm Zn}_8{\rm Cu}_{5}^{+}}\), Zn9Cu4, Zn11Cu2) have compact copper cores surrounded by an incomplete shell of solvating Zn atoms. The icosahedral structure, low total energy, and large hardness of Zn7Cu6 indicate that it has special stability among Zn x Cu y clusters. However, Zn7Cu6 has many low lying isomers and a small cohesive energy compared to brass, which suggest that it is not stable in a broader sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cox AJ, Louderback JG and Bloomfield LA (1993). Phys Rev Lett 71: 923

    Article  CAS  Google Scholar 

  2. Knickelbein MB (2001). Phys Rev Lett 86: 5255

    Article  CAS  Google Scholar 

  3. Alivisatos AP (1996). J Phys Chem 100: 13266

    Article  Google Scholar 

  4. Mintmire JW, Dunlap BI and White CT (1992). Phys Rev Lett 68: 631

    Article  CAS  Google Scholar 

  5. Hamada N et al (1992). Phys Rev Lett 68: 1579

    Article  CAS  Google Scholar 

  6. Rinzler AG et al (1995). Science 269: 1550

    Article  CAS  Google Scholar 

  7. Tans J et al (1997). Nature 386: 474

    Article  CAS  Google Scholar 

  8. Dillon AC et al (1997). Nature 386: 377

    Article  CAS  Google Scholar 

  9. Collins PC et al (2001). Science 292: 292

    Article  Google Scholar 

  10. Knickelbein MB (1999). Annu Rev Phys Chem 50: 79

    Article  CAS  Google Scholar 

  11. Kim S-H, Medeiros-Ribeiro G, Ohlberg DAA, Stanley Williams R and Heath JR (1999). J Phys Chem 103: 10341

    CAS  Google Scholar 

  12. Ugrinov A and Sevov SC (2003). Inorg Chem 42: 5789

    Article  CAS  Google Scholar 

  13. Andres RP et al (1989). J Mater Res 4: 704

    Article  CAS  Google Scholar 

  14. Alonso JA (2005) Structure and properties of atomic nanoclusters imperial college press, London, pp. 371–375

  15. Farges J, De Feraudy MF, Raoult B and Torchet G (1983). J Chem Phys 78: 5067

    Article  CAS  Google Scholar 

  16. Martin TP (1996). Phys Reports 273: 199

    Article  CAS  Google Scholar 

  17. Knight WD, Clemenger K, DeHeer WA, Saunders WA, Chou MY and Cohen ML (1984). Phys Rev Lett 52: 2141

    Article  CAS  Google Scholar 

  18. Leuchtner RE, Harms AC and Castleman AW Jr (1989). J Chem Phys 91: 2753

    Article  CAS  Google Scholar 

  19. Sun Y and Fournier R (2007). Phys Rev A 75: 063205

    Article  Google Scholar 

  20. Somorjai GA (1994). Introduction to surface chemistry and catalysis. Wiley, New York

    Google Scholar 

  21. Van Ooij WJ (1977). Surface Technol 6: 1

    Article  CAS  Google Scholar 

  22. Frisch MJ et al. (2004) Gaussian 03, Revision C.02, Gaussian, Wallingford

  23. Dunning TH Jr, Hay PJ (1976) in modern theoretical chemistry, Schaefer III HF (ed) Plenum, New York, vol. 3, p 1

  24. Perdew JP, Burke K and Ernzerhof M (1996). Phys Rev Lett 77: 3865

    Article  CAS  Google Scholar 

  25. Perdew JP, Burke K and Ernzerhof M (1997). Phys Rev Lett 78: 1396

    Article  CAS  Google Scholar 

  26. Cvijovic D and Klinowski J (1995). Science 267: 664

    Article  CAS  Google Scholar 

  27. Hong SD and Jhon MS (1997). Chem Phys Lett 267: 422

    Article  CAS  Google Scholar 

  28. Cheng J and Fournier R (2004). Theor Chem Acc 112: 7

    CAS  Google Scholar 

  29. Cheng JBY (2002) MSc Thesis, York University; Fournier R (2007) J Chem Theor Comp 3:921

  30. Kresse G and Furthmüller J (1996). Comput Mater Sci 6: 15

    Article  CAS  Google Scholar 

  31. Kresse G and Furthmüller J (1996). Phys Rev B 54: 11169

    Article  CAS  Google Scholar 

  32. Kresse G and Hafner J (1993). Phys Rev B 48: 13115

    Article  CAS  Google Scholar 

  33. Becke AD (1993). J Chem Phys 98: 5648

    Article  CAS  Google Scholar 

  34. Muscat J, Wander A and Harrison NM (2001). Chem Phys Lett 342: 397

    Article  CAS  Google Scholar 

  35. Barden CJ, Rienstra-Kiracofe and Schaefer HF III (2000). J Chem Phys. 113: 690

    Article  CAS  Google Scholar 

  36. Yanagisawa S, Tsuneda T and Hirao K (2000). J Chem Phys 112: 545

    Article  CAS  Google Scholar 

  37. Paier J, Marsman M and Kresse F (2007). J Chem Phys 127: 024103

    Article  Google Scholar 

  38. Pearson RG (1968). J Chem Ed 45: 981

    Google Scholar 

  39. Parr RG and Chattaraj PK (1991). J Am Chem Soc 113: 1854

    Article  CAS  Google Scholar 

  40. Ayers PW and Parr RG (2000). J Am Chem Soc 122: 2010

    Article  CAS  Google Scholar 

  41. Fournier R (2001). J Chem Phys 115: 2165

    Article  CAS  Google Scholar 

  42. Sun Y, Zhang M, Fournier R (2008) Phys Rev B (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Fournier.

Additional information

We dedicate this manuscript to Nino Russo on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botticelli, J., Fournier, R. & Zhang, M. Zn7Cu6: a magic cluster of brass?. Theor Chem Account 120, 583–589 (2008). https://doi.org/10.1007/s00214-008-0413-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0413-z

Keywords

Navigation