Skip to main content
Log in

Quantitative derivation of the bijective link between molecular data and UV–visible absorption spectra for diluted molecules: guidelines for non specialists

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this article, we give a detailed derivation of the theoretical sequence leading from molecular data to UV–visible absorption spectra, and back from absorption spectra to molecular data, in the widely encountered case of linearly absorbent molecular species homogeneously and isotropically diluted in a homogeneous and isotropic transparent matrix or solvent. At each step of the derivation, assumptions and approximations are clearly explained and references are provided for the justifications which are out of the scope of the present article. The precision and the limitations of such spectroscopic investigations are then underlined and quantified on two examples: a hypothetic academic one-dimensional system and the \({\rm Ni}({\rm H}_{2}{\rm O})_{6}^{2+}\) aqueous complex. The present interdisciplinary article aims to contribute to more efficient, and more and more necessary, interplays and mutual interactions between theoreticians and experimentalists by providing, to nonspecialists of both sides, a rather complete but clear and accessible description of the previously mentioned bijective sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weast RC (1979). Handbook of Chemistry, 60th edn. CRC Press, Boca Raton

    Google Scholar 

  2. Albrecht AC (1960). “forbidden” character in allowed electronic transitions. J Chem Phys 33(1): 156–169

    Article  CAS  Google Scholar 

  3. Andrews L and Moskovits L (1989). Chemistry and physics of matrix isolated species. NorthHolland, Amsterdam

    Google Scholar 

  4. Atkins PW and Friedman RS (2001). Molecular quantum mechanics, 3rd edn. Oxford University Press, New York

    Google Scholar 

  5. Bell JE (1981). Spectroscopy in biochemistry, vol 1, 2. CRC Press, Boca Raton

    Google Scholar 

  6. Blachnik R (1998). Elemente, anorganische Verbindungen und Materialen, Minerale, Taschenbuch für Chemiker und Physiker, vol 3, 4th edn. Springer, Berlin

    Google Scholar 

  7. Condon EU and Shortley GH (1991). The theory of atomic spectra. Cambridge University Press, Cambridge

    Google Scholar 

  8. Cotton AF, Wilkinson G, Murillo CA and Bochmann M (1999). Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  9. Debye PJW (1929). Polar molecules. Dover, New York

    Google Scholar 

  10. Delgass WN, Haller GL, Kellerman R and Lunsford JH (1979). Spectroscopy in heterogenous catalysis. Academic Press, New York

    Google Scholar 

  11. Dodd RE (1962). Chemical spectroscopy. Elsevier Student, Amsterdam

    Google Scholar 

  12. Feynman RP, Leighton RB and Sands M (2005). Feynman lectures on physics, definitive and expanded edition, 2nd edn. Addison Wesley, Redwood City

    Google Scholar 

  13. Fortrie R, Chermette H (2006) Two-photon absorption strength: anew tool for the quantification of two-photon absorption. J Chem Phys 124:204104

    Article  Google Scholar 

  14. Fortrie R and Chermette H (2007). Vibronic quasi-free rotation effects in biphenyl-like molecules. TD-DFT study of bifluorene. J Chem Theor Comput 3(3): 852–859

    Article  CAS  Google Scholar 

  15. Fortrie R, Anémian R, Stephan O, Mulatier JC, Baldeck PL, Andraud C and Chermette H (2007). Enhancement of two-photon absorption via oligomerization. a route for the engineering of two-photon absorbers in the visible range. J Phys Chem C 111(5): 2270–2279

    Article  CAS  Google Scholar 

  16. http://www.hellmafrance.fr

  17. Harris DC and Bertolucci MD (1989). Symmetry and spectroscopy. An introduction to vibrational and electronic spectroscopy. Dover Publications, New York

    Google Scholar 

  18. Heisenberg W (1925). Z Phys 33: 879

    Article  CAS  Google Scholar 

  19. Herzberg G and Teller E (1933). Vibrational structure of electronic transitions for polyatomic molecules. Z Physik Chem B 21: 410–446

    Google Scholar 

  20. Hollas JM (1982). High resolution spectroscopy. Butterworths, London

    Google Scholar 

  21. Hollas JM (2000). Modern spectroscopy, 4th edn. Wiley, Chichester

    Google Scholar 

  22. http://www.jascofrance.fr

  23. Huheey JE, Keiter EA and Keiter RL (1997). Inorganic chemistry: principles of structure and reactivity, 4th edn. HarperCollins, New York

    Google Scholar 

  24. Klöpffer W (1984). Introduction to polymer spectroscopy, polymers/properties and applications, vol 7. Springer, Berlin

    Google Scholar 

  25. Kuhn W (1925). Z Phys 33: 408

    Article  CAS  Google Scholar 

  26. Kuzmany H (1998). Solid-state spectroscopy and its applications. Springer, Berlin

    Google Scholar 

  27. Leach AR and Gillet V (2003). An introduction to chemoinformatics. Kluwer Academic, Dordrecht

    Google Scholar 

  28. Lorentz HA (1951) The theory of electrons and its applications to the phenomena of light and radiant Heat. In: Teubner B.G. (ed) Leipzig, 1916. Dover, New York

  29. Maier JP (1989). Ion and cluster ion spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  30. McNaught AD and Wilkinson A (1997). IUPAC compemdium of chemical terminology. The gold book, 2nd edn. Blackwell Science, Oxford

    Google Scholar 

  31. Nakamoto K and McCarthy PJ (1968). Spectroscopy and structrure of metal chelate compounds. Wiley, New York

    Google Scholar 

  32. Onsager L (1936). Electric moments of molecules in liquids. J Am Chem Soc 58(8): 1486–1493

    Article  CAS  Google Scholar 

  33. Orr BJ and Ward JF (1971). Perturbation theory of the non-linear optical polarization of an isolated system. Molec Phys 20: 513–526

    Article  CAS  Google Scholar 

  34. Perkampus HH (ed) (1995) Encyclopedia of spectroscopy. VCH, Weinheim

    Google Scholar 

  35. Reiche F and Thomas W (1925). Z Phys 34: 510

    Article  Google Scholar 

  36. Roche M and Jaffé HH (1974). A modification of the Herzberg-Teller expension for vibronic coupling. J Chem Phys 60(4): 1193–1196

    Article  CAS  Google Scholar 

  37. Sierka M and Sauer J (2000). Finding transition structures in extended systems: a strategy based on a combined quantum mechanics-empirical valence bond approach. J Chem Phys 112(16): 6983–6996

    Article  CAS  Google Scholar 

  38. Spezia R, Duvail M, Vitorge P, Cartailler T, Tortajada J, Chillemi G, D’Angelo P and Gaigeot MP (2006). A coupled Car-Parrinello molecular dynamics and EXAFS data analysis investigation of aqueous co2+. J Phys Chem A 110(48): 13081–13088

    Article  CAS  Google Scholar 

  39. Thomas W (1925). Naturwiss 13: 627

    Article  Google Scholar 

  40. Vollhardt KPC and Shore NE (1994). Organic chemistry. 2nd edn. Freeman, New York

    Google Scholar 

  41. Williams DH and Fleming I (1995). Spectroscopic methods in organic chemistry, 5th edn. McGraw Hill, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Chermette.

Additional information

This paper is dedicated to the 60th birthday of Nino Russo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortrie, R., Chermette, H. Quantitative derivation of the bijective link between molecular data and UV–visible absorption spectra for diluted molecules: guidelines for non specialists. Theor Chem Account 120, 363–374 (2008). https://doi.org/10.1007/s00214-008-0411-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0411-1

Keywords

Navigation