Theoretical Chemistry Accounts

, Volume 120, Issue 4–6, pp 363–374 | Cite as

Quantitative derivation of the bijective link between molecular data and UV–visible absorption spectra for diluted molecules: guidelines for non specialists

  • Rémy Fortrie
  • Henry ChermetteEmail author
Regular Article


In this article, we give a detailed derivation of the theoretical sequence leading from molecular data to UV–visible absorption spectra, and back from absorption spectra to molecular data, in the widely encountered case of linearly absorbent molecular species homogeneously and isotropically diluted in a homogeneous and isotropic transparent matrix or solvent. At each step of the derivation, assumptions and approximations are clearly explained and references are provided for the justifications which are out of the scope of the present article. The precision and the limitations of such spectroscopic investigations are then underlined and quantified on two examples: a hypothetic academic one-dimensional system and the \({\rm Ni}({\rm H}_{2}{\rm O})_{6}^{2+}\) aqueous complex. The present interdisciplinary article aims to contribute to more efficient, and more and more necessary, interplays and mutual interactions between theoreticians and experimentalists by providing, to nonspecialists of both sides, a rather complete but clear and accessible description of the previously mentioned bijective sequence.


Spectroscopy UV–visible Absorption Theory Experiment Quantitative Link 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weast RC (1979). Handbook of Chemistry, 60th edn. CRC Press, Boca Raton Google Scholar
  2. 2.
    Albrecht AC (1960). “forbidden” character in allowed electronic transitions. J Chem Phys 33(1): 156–169 CrossRefGoogle Scholar
  3. 3.
    Andrews L and Moskovits L (1989). Chemistry and physics of matrix isolated species. NorthHolland, Amsterdam Google Scholar
  4. 4.
    Atkins PW and Friedman RS (2001). Molecular quantum mechanics, 3rd edn. Oxford University Press, New York Google Scholar
  5. 5.
    Bell JE (1981). Spectroscopy in biochemistry, vol 1, 2. CRC Press, Boca Raton Google Scholar
  6. 6.
    Blachnik R (1998). Elemente, anorganische Verbindungen und Materialen, Minerale, Taschenbuch für Chemiker und Physiker, vol 3, 4th edn. Springer, Berlin Google Scholar
  7. 7.
    Condon EU and Shortley GH (1991). The theory of atomic spectra. Cambridge University Press, Cambridge Google Scholar
  8. 8.
    Cotton AF, Wilkinson G, Murillo CA and Bochmann M (1999). Advanced inorganic chemistry, 6th edn. Wiley, New York Google Scholar
  9. 9.
    Debye PJW (1929). Polar molecules. Dover, New York Google Scholar
  10. 10.
    Delgass WN, Haller GL, Kellerman R and Lunsford JH (1979). Spectroscopy in heterogenous catalysis. Academic Press, New York Google Scholar
  11. 11.
    Dodd RE (1962). Chemical spectroscopy. Elsevier Student, Amsterdam Google Scholar
  12. 12.
    Feynman RP, Leighton RB and Sands M (2005). Feynman lectures on physics, definitive and expanded edition, 2nd edn. Addison Wesley, Redwood City Google Scholar
  13. 13.
    Fortrie R, Chermette H (2006) Two-photon absorption strength: anew tool for the quantification of two-photon absorption. J Chem Phys 124:204104CrossRefGoogle Scholar
  14. 14.
    Fortrie R and Chermette H (2007). Vibronic quasi-free rotation effects in biphenyl-like molecules. TD-DFT study of bifluorene. J Chem Theor Comput 3(3): 852–859 CrossRefGoogle Scholar
  15. 15.
    Fortrie R, Anémian R, Stephan O, Mulatier JC, Baldeck PL, Andraud C and Chermette H (2007). Enhancement of two-photon absorption via oligomerization. a route for the engineering of two-photon absorbers in the visible range. J Phys Chem C 111(5): 2270–2279 CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Harris DC and Bertolucci MD (1989). Symmetry and spectroscopy. An introduction to vibrational and electronic spectroscopy. Dover Publications, New York Google Scholar
  18. 18.
    Heisenberg W (1925). Z Phys 33: 879 CrossRefGoogle Scholar
  19. 19.
    Herzberg G and Teller E (1933). Vibrational structure of electronic transitions for polyatomic molecules. Z Physik Chem B 21: 410–446 Google Scholar
  20. 20.
    Hollas JM (1982). High resolution spectroscopy. Butterworths, London Google Scholar
  21. 21.
    Hollas JM (2000). Modern spectroscopy, 4th edn. Wiley, Chichester Google Scholar
  22. 22.
  23. 23.
    Huheey JE, Keiter EA and Keiter RL (1997). Inorganic chemistry: principles of structure and reactivity, 4th edn. HarperCollins, New York Google Scholar
  24. 24.
    Klöpffer W (1984). Introduction to polymer spectroscopy, polymers/properties and applications, vol 7. Springer, Berlin Google Scholar
  25. 25.
    Kuhn W (1925). Z Phys 33: 408 CrossRefGoogle Scholar
  26. 26.
    Kuzmany H (1998). Solid-state spectroscopy and its applications. Springer, Berlin Google Scholar
  27. 27.
    Leach AR and Gillet V (2003). An introduction to chemoinformatics. Kluwer Academic, Dordrecht Google Scholar
  28. 28.
    Lorentz HA (1951) The theory of electrons and its applications to the phenomena of light and radiant Heat. In: Teubner B.G. (ed) Leipzig, 1916. Dover, New YorkGoogle Scholar
  29. 29.
    Maier JP (1989). Ion and cluster ion spectroscopy. Elsevier, Amsterdam Google Scholar
  30. 30.
    McNaught AD and Wilkinson A (1997). IUPAC compemdium of chemical terminology. The gold book, 2nd edn. Blackwell Science, Oxford Google Scholar
  31. 31.
    Nakamoto K and McCarthy PJ (1968). Spectroscopy and structrure of metal chelate compounds. Wiley, New York Google Scholar
  32. 32.
    Onsager L (1936). Electric moments of molecules in liquids. J Am Chem Soc 58(8): 1486–1493 CrossRefGoogle Scholar
  33. 33.
    Orr BJ and Ward JF (1971). Perturbation theory of the non-linear optical polarization of an isolated system. Molec Phys 20: 513–526 CrossRefGoogle Scholar
  34. 34.
    Perkampus HH (ed) (1995) Encyclopedia of spectroscopy. VCH, WeinheimGoogle Scholar
  35. 35.
    Reiche F and Thomas W (1925). Z Phys 34: 510 CrossRefGoogle Scholar
  36. 36.
    Roche M and Jaffé HH (1974). A modification of the Herzberg-Teller expension for vibronic coupling. J Chem Phys 60(4): 1193–1196 CrossRefGoogle Scholar
  37. 37.
    Sierka M and Sauer J (2000). Finding transition structures in extended systems: a strategy based on a combined quantum mechanics-empirical valence bond approach. J Chem Phys 112(16): 6983–6996 CrossRefGoogle Scholar
  38. 38.
    Spezia R, Duvail M, Vitorge P, Cartailler T, Tortajada J, Chillemi G, D’Angelo P and Gaigeot MP (2006). A coupled Car-Parrinello molecular dynamics and EXAFS data analysis investigation of aqueous co2+. J Phys Chem A 110(48): 13081–13088 CrossRefGoogle Scholar
  39. 39.
    Thomas W (1925). Naturwiss 13: 627 CrossRefGoogle Scholar
  40. 40.
    Vollhardt KPC and Shore NE (1994). Organic chemistry. 2nd edn. Freeman, New York Google Scholar
  41. 41.
    Williams DH and Fleming I (1995). Spectroscopic methods in organic chemistry, 5th edn. McGraw Hill, London Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de ChimieUniversité de LyonLyon Cedex 07France
  2. 2.CNRS UMR 5180 Sciences Analytiques, Chimie Physique Théorique, Bât. Paul Dirac (210)Université de Lyon, Université Lyon 1Villeurbanne CedexFrance

Personalised recommendations