Skip to main content
Log in

Theoretical design of blue emitting materials based on symmetric and asymmetric spirosilabifluorene derivatives

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Equilibrium ground state geometry configurations and their relevant electronic properties of four experimentally reported asymmetric spirosilabifluorene derivatives are calculated by the HF(DFT)/6-31G(d) method. Their excited state geometries are investigated using the CIS/6-31G(d) method. The absorption and emission spectra are evaluated using the TD-B3LYP/6-31G(d) and TD-PBE0/6-31+G(d) levels both in gas phase and CHCl3 solvent. Our results show an excellent agreement with the experimental data on their optical properties. To predict the substitution effect, the H/R (R = –NO2, –CN, –NH2 and –OCH3) substituted symmetric and asymmetric spirosilabifluorene derivatives are also investigated, and the optical properties of H/R substituted derivatives are predicted in gas phase and CHCl3 solvent. In comparison with the parent compound, significant red-shift is predicted for the emission spectra of the di-substituted symmetric derivatives with –NH2 (96 nm), –OCH3 (61 nm) and the push–pull (containing both –NH2 and –NO2) derivative (56 nm). It is found that the performance and the optical properties of these derivatives can be improved by adding push–pull substitutents. The largest change in the electronic and optical properties of this system can be obtained upon symmetric di-substitution among mono-, di-, tri- and tetra-substitutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang CW, Van Slyke SA (1987) Appl Phys Lett 51: 913

    Article  CAS  Google Scholar 

  2. Kulkarni AP, Tonzola CJ, Babel A, Jenekhe SA (2004) Chem Mater 16: 4556

    Article  CAS  Google Scholar 

  3. Lee SK, Hwang DH, Jung JB, Cho NS, Lee J, Lee JD, Shim HK (2005) Adv Funct Mater 15: 1647

    Article  CAS  Google Scholar 

  4. Liu J, Zhou QG, Cheng YX, Geng YH, Wang LX, Ma DG, Jing X B, Wang FS (2005) Adv Mater 17: 2974

    Article  CAS  Google Scholar 

  5. Tu GL, Mei CY, Zhou QG, Cheng YX, Geng YH, Wang LX, Ma DG, Jing XB, Wang FS (2006) Adv Funct Mater 16: 101

    Article  CAS  Google Scholar 

  6. Liu J, Zhou QG, Cheng YX, Geng YH, Wang LX, Ma DG, Jing XB, Wang FS (2006) Adv Func Mater 16: 957

    Article  CAS  Google Scholar 

  7. Yang R, Wu H, Cao Y, Ba ZG (2006) J Am Chem Soc 128: 14422

    Article  CAS  Google Scholar 

  8. Jiang J, Xu Y, Yang W, Guan R, Liu Z, Zhen H, Cao Y (2006) Adv Mater 18: 1769

    Article  CAS  Google Scholar 

  9. Wong KT, Chien YY, Chen RT, Wang CF, Lin YT, Chiang HH, Hsieh PY, Wu CC, Chou CH, Su YO, Lee GH, Peng SM (2002) J Am Chem Soc 124: 11576

    Article  CAS  Google Scholar 

  10. Steuber F, Staudigel J, Stössel M, Simmerer J, Winnacker A, Spreitzer H, Weissörtel F, Salbeck J (2000) Adv Mater 12: 130

    Article  CAS  Google Scholar 

  11. Wu CC, Lin YT, Chiang HH, Cho TY, Chen CW, Wong KT, Liao YL, Lee GH, Peng SM (2002) Appl Phys Lett 81: 577

    Article  CAS  Google Scholar 

  12. Schneider D, Rabe T, Riedl T, Dobbertin T, Werner O, Kröger M, Becker E, Johannes HH, Kowalsky W, Weimann T, Wang J, Hinze P, Gerhard A, Stössel P, Vestweber H (2004) Appl Phys Lett 84: 4693

    Article  CAS  Google Scholar 

  13. Saragi TPI, Pudzich R, Fuhrmann T, Salbeck J (2004) Appl Phys Lett 84: 2334

    Article  CAS  Google Scholar 

  14. Bach U, Lupo D, Comte P, Moser JE, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M (1998) Nature 395: 583

    Article  CAS  Google Scholar 

  15. Cabanillas-Gonzalez J, Yeates S, Bradley DDC (2003) Synth Met 139: 637

    Article  CAS  Google Scholar 

  16. Kim SY, Lee M, Boo BH (1998) J Chem Phys 109: 2593

    Article  CAS  Google Scholar 

  17. Tian H, Chen B, Liu PH (2001) Chem Lett 30: 990

    Article  Google Scholar 

  18. Ghosh P, Shabat D, Kumar S, Sinha SC, Grynszpan F, Li J, Noodleman L, Keinan E (1996) Nature 382: 25

    Article  Google Scholar 

  19. Murata H, Kafafi ZH, Uchida M (2002) Appl Phys Lett 80: 189

    Article  CAS  Google Scholar 

  20. Palilis LC, Murata H, Uchida M, Kafafi ZH (2003) Organic Electronics 4: 113

    Article  CAS  Google Scholar 

  21. Ohshita J, Lee KH, Hamamoto D, Kunugi Y, Ikadai J, Kwak YW (2004) Chem Lett 33: 892

    Article  CAS  Google Scholar 

  22. Mitschke U, Bauerle P (2001) J Chem Soc Perkin Trans 1: 740

    Article  Google Scholar 

  23. Wu RL, Schumm JS, Pearson DL, Tour JM (1996) J Org Chem 61: 6906

    Article  CAS  Google Scholar 

  24. Xiao HB, Leng B, Tian H (2005) Polymer 46: 5707

    Article  CAS  Google Scholar 

  25. Pei J, Ni J, Zhou XH, Cao XY, Lai YH (2002) J Org Chem 67: 4924

    Article  CAS  Google Scholar 

  26. Tamao K, Uchida M, Izumizawa T, Furukawa K, Yamaguchi S (1996) J Am Chem Soc 118: 11974

    Article  CAS  Google Scholar 

  27. Yamaguchi S, Endo T, Uchida M, Izumizawa T, Furukawa K, Tamao K (2000) Chem Eur J 6: 1683

    Article  CAS  Google Scholar 

  28. Watkins NJ, Mdkinen AJ, Gao Y, Uchida M, Kafafi ZH (2004) Proc SPIE Int Soc Opt Engr 5214: 368

    CAS  Google Scholar 

  29. Yin SW, Yi YP, Li QX, Yu G, Liu YQ, Shuai ZG (2006) J Phys Chem A 110: 7138

    Article  CAS  Google Scholar 

  30. Murata H, Malliaras GG, Uchida M, Shen Y, Kafafi ZH (2001) Chem Phys Lett 339: 161

    Article  CAS  Google Scholar 

  31. Maslak P, Chopra A, Moylan CR, Wortmann R, Lebus S, Rheingold AL (1996) J Am Chem Soc 118: 1471

    Article  CAS  Google Scholar 

  32. Wu CC, Liu TL, Hung WY, Lin YT, Wong KT, Chen RT, Chen YM, Chien YY (2003) J Am Chem Soc 125: 3710

    Article  CAS  Google Scholar 

  33. Xiao HB, Shen H, Lin YG, Su JH, Tian H (2007) Dyes Pigments 73: 224

    Article  CAS  Google Scholar 

  34. Lee SH, Jang BB, Kafafi ZH (2005) J Am Chem Soc 127: 9071

    Article  CAS  Google Scholar 

  35. Lukeš V, Pálszegir T, Milota F, Sperling J, Kauffmann HF (2006) J Phys Chem A 110: 1775

    Article  Google Scholar 

  36. Yang GC, Su ZM, Qin CS (2006) J Phys Chem A 110: 4817

    Article  CAS  Google Scholar 

  37. Sun XB, Liu Y, Xu XJ, Yang CH, Yu G, Zhu DB (2005) J Phys Chem B 109: 10786

    Article  CAS  Google Scholar 

  38. Belletête M, Blouin N, Boudreault PT, Leclerc M, Durocher G (2006) J Phys Chem A 110: 13696

    Article  Google Scholar 

  39. Ortí E, Viruela PM, Viruela R, Effenberger F (2005) J Phys Chem A 109: 8724

    Article  Google Scholar 

  40. Jacquemin D, Preat J, Wathelet V, Michèle F, Perpète EA (2006) J Am Chem Soc 128: 2072

    Article  CAS  Google Scholar 

  41. Belletête M, Morin JF, Leclerc M, Durocher G (2005) J Phys Chem A 109: 6953

    Article  Google Scholar 

  42. Wu C, Tretiak S, Chernyak VY (2007) Chem Phys Lett 433: 305

    Article  CAS  Google Scholar 

  43. Masunov A, Tretiak S (2004) J Chem Phys B 108: 899

    Article  CAS  Google Scholar 

  44. Hariharan PC, Pople JA (1974) Mol Phys 27: 209

    Article  CAS  Google Scholar 

  45. Gordon MS (1980) Chem Phys Lett 76: 163

    Article  CAS  Google Scholar 

  46. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80: 3265

    Article  CAS  Google Scholar 

  47. Foresman JB, Head-Gordon M, Pople JA, Frisch MJ (1992) J Phys Chem 96: 135

    Article  CAS  Google Scholar 

  48. Becke AB (1993) J Chem Phys 98: 5648

    Article  CAS  Google Scholar 

  49. Lee C, Yang W, Parr RG (1988) Phys Rev B 37: 785

    Article  CAS  Google Scholar 

  50. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch M (1994) J Phys Chem 98: 11623

    Article  CAS  Google Scholar 

  51. Foresman JB, Head-Gordon M, Pople JA, Frish MJ (1992) J Phys Chem 96: 135

    Article  CAS  Google Scholar 

  52. Stratman RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109: 8218

    Article  Google Scholar 

  53. Bacon AD, Zerner MC (1979) Theor Chim Acta 53: 21

    Article  CAS  Google Scholar 

  54. Adamo C, Barone V (1999) J Chem Phys 110: 6158

    Article  CAS  Google Scholar 

  55. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comp Chem 4: 294

    Article  CAS  Google Scholar 

  56. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107: 3032

    Article  Google Scholar 

  57. Cornard JP, Lapouge C (2006) J Phys Chem A 110: 7159

    Article  CAS  Google Scholar 

  58. Cossi M, Barone V (2001) J Chem Phys 115: 4708

    Article  CAS  Google Scholar 

  59. Becke AD (1993) J Chem Phys 98: 1372

    Article  CAS  Google Scholar 

  60. Gaussian 03, Revision B.03 (2003) Gaussian, Pittsburgh

  61. Gaussview 3.0 Reference (2003) Gaussian, Wallingford

  62. Stephan Portmann (2002) CSCS/ETHZ http://www.cscs.ch/molekel

  63. Marcos AD, Duarte HA, Pernaut JM, Wagner BD (2000) J Phys Chem A 104: 8256

    Article  Google Scholar 

  64. Halls MD, Schlegel HB (2001) Chem Mater 13: 2632

    Article  CAS  Google Scholar 

  65. Foresman JB, Schlegel HB (1933) In: Gausto R, Hollas JM (eds) Recent experimental and computational advances in molecular spectroscopy, vol 406. Kluwer, Dordrecht, p 11

  66. Tirapattur S, Belletête M, Leclerc M, Durocher G (2003) TheoChem 625: 141

    Article  CAS  Google Scholar 

  67. Zhang JP, Frenking G (2004) J Phys Chem A 108: 10269

    Google Scholar 

  68. Hu B, Gahungu G, Zhang JP (2007) J Phys Chem A 111: 4965

    Article  CAS  Google Scholar 

  69. Magyar RJ, Tretiak S (2007) J Chem Theory Comput 3: 976

    Article  CAS  Google Scholar 

  70. Reed AE, Weinhold F (1983) J Chem Phys 78: 4066

    Article  CAS  Google Scholar 

  71. Mulliken RS (1955) J Chem Phys 23: 1833

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingping Zhang.

Electronic supplementary material

Below is the link for the Electronic supplementary material

Supplementary material (doc 3987KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, M., Niu, B. & Zhang, J. Theoretical design of blue emitting materials based on symmetric and asymmetric spirosilabifluorene derivatives. Theor Chem Account 119, 489–500 (2008). https://doi.org/10.1007/s00214-008-0410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0410-2

Keywords

Navigation