Advertisement

Theoretical Chemistry Accounts

, Volume 121, Issue 1–2, pp 1–10 | Cite as

Ab initio characterization of XH3 (X = N,P). Part II. Electric, magnetic and spectroscopic properties of ammonia and phosphine

  • Cristina Puzzarini
Regular Article

Abstract

The coupled cluster theory in conjunction with core valence triple and quadruple zeta basis sets has been employed for investigating electric, magnetic and spectroscopic properties of ammonia and phosphine. Namely molecular dipole and quadrupole moments, NMR shielding and spin-rotation constants, as well as spectroscopic properties such as rotational and centrifugal distortion constants as well as harmonic and anharmonic frequencies of NH3 and PH3 have been determined at a high level of accuracy. To obtain parameters directly comparable to experiment, vibrational effects have also been taken into account. In addition, the basis set convergence has been investigated for the molecular dipole moment.

Keywords

Ammonia Phosphine Ab initio calculation Dipole and quadrupole moment Magnetic shielding Spin-rotation constants Spectroscopic parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Puzzarini C (2008) Theor Chem Acc (submitted, for publication)Google Scholar
  2. 2.
    Gauss J (2000) In: Modern methods and algorithms of quantum chemistry. Grotendorst J (ed) John von Neuman Institute for Computing, pp 509–560Google Scholar
  3. 3.
    Gauss J, Stanton JF (2002) Adv Chem Phys 123: 355CrossRefGoogle Scholar
  4. 4.
    Coriani S, Halkier A, Jonsson D, Gauss J, Rizzo A, Christinasen O (2003) J Chem Phys 118: 7329CrossRefGoogle Scholar
  5. 5.
    Auer AA, Gauss J, Stanton JF (2003) J Chem Phys 118: 10407CrossRefGoogle Scholar
  6. 6.
    Puzzarini C (2006) Lecture Series Comput Computat Sci 6: 416Google Scholar
  7. 7.
    Gauss J, Ruud K, Kállay M (2007) J Chem Phys. 127: 074101CrossRefGoogle Scholar
  8. 8.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 156: 479CrossRefGoogle Scholar
  9. 9.
    Gauss J (2002) J Chem Phys 116: 4773CrossRefGoogle Scholar
  10. 10.
    Cazzoli G, Puzzarini C, Gauss J (2005) Astrophys J Suppl 159: 181CrossRefGoogle Scholar
  11. 11.
    Puzzarini C, Coriani S, Rizzo A, Gauss J (2005) Chem Phys Lett 409: 118CrossRefGoogle Scholar
  12. 12.
    Rizzo A, Puzzarini C, Coriani S, Gauss J (2005) J Chem Phys 124: 064302CrossRefGoogle Scholar
  13. 13.
    Cazzoli G, Puzzarini C, Gambi A, Gauss J (2006) J Chem Phys 125: 054313CrossRefGoogle Scholar
  14. 14.
    Cazzoli G, Puzzarini C, Baldacci A, Baldan A (2007) J Mol Spectrosc 241: 115CrossRefGoogle Scholar
  15. 15.
    Tew DP, Klopper W, Heckert M, Gauss J (2007) J Phys Chem A 111: 11242CrossRefGoogle Scholar
  16. 16.
    Dunning TH Jr, Peterson KA, Wilson AK (2001) J Chem Phys 114: 9244CrossRefGoogle Scholar
  17. 17.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96: 6796CrossRefGoogle Scholar
  18. 18.
    Peterson KA, Dunning TH Jr (2002) J Chem Phys 117: 10548CrossRefGoogle Scholar
  19. 19.
    Werner H-J, Knowles PJ, with contributions of Amos RD, Bernhardsson A, Celani P, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Korona T, Lindh R, Lloyd AW, McNicholas SJ, Manby FR, Meyer W, Mura ME, Nicklass A, Palmieri P, Pitzer R, Rauhut G, Schütz M, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T MOLPRO is a package of ab initio programsGoogle Scholar
  20. 20.
    Halkier A, Klopper W, Helgaker T, Jørgensen P (1999) J Chem Phys 111: 4424CrossRefGoogle Scholar
  21. 21.
    Gauss J, Ruud K, Helgaker T (1996) J Chem Phys 105: 2804CrossRefGoogle Scholar
  22. 22.
    ACESII (Mainz-Austin-Budapest version), a quantum-chemical program package for high-level calculations of energies and properties by Stanton JF et al., see http://www.aces2.deGoogle Scholar
  23. 23.
    Buckingham A (1967) Adv Chem Phys 12: 107CrossRefGoogle Scholar
  24. 24.
    Lucken EAC (1969) Nuclear quadrupole coupling constants. Academic Press, New YorkGoogle Scholar
  25. 25.
    Gauss J, Stanton JF (1995) J Chem Phys 103: 3561CrossRefGoogle Scholar
  26. 26.
    Gauss J, Stanton JF (1996) J Chem Phys 104: 2574CrossRefGoogle Scholar
  27. 27.
    Flygare WH (1964) J Chem Phys 41: 793CrossRefGoogle Scholar
  28. 28.
    Flygare WH (1974) Chem Rev 74: 653CrossRefGoogle Scholar
  29. 29.
    Gauss J, Stanton JF (1997) Chem Phys Lett 276: 70CrossRefGoogle Scholar
  30. 30.
    Stanton JF, Lopreore CL, Gauss J (1998) J Chem Phys 108: 7190CrossRefGoogle Scholar
  31. 31.
    Stanton JF, Gauss J (2000) Int Rev Phys Chem 19: 61CrossRefGoogle Scholar
  32. 32.
    Mills IM (1972) In: Rao KN, Mathews CW (eds) Molecular spectroscopy: modern research. Acadamic, New YorkGoogle Scholar
  33. 33.
    Halkier A, Taylor PR (1998) Chem Phys Lett 285: 133CrossRefGoogle Scholar
  34. 34.
    Bak KL, Gauss J, Helgaker T, Jørgensen P, Olsen J (2000) Chem Phys Lett 319: 563CrossRefGoogle Scholar
  35. 35.
    Halkier A, Larsen H, Olsen J, Jørgensen P, Gauss J (1999) J Chem Phys 110: 734CrossRefGoogle Scholar
  36. 36.
    Russell AJ, Spackman MA (1997) Mol Phys 90: 251CrossRefGoogle Scholar
  37. 37.
    Antušek A, Jaszuński M (2006) Mol Phys 104: 1467Google Scholar
  38. 38.
    Gauss J, Ruud K (1995) Int J Quantum Chem Symp 29: 437CrossRefGoogle Scholar
  39. 39.
    Ramsey NF (1950) Phys Rev 78: 699CrossRefGoogle Scholar
  40. 40.
    Larsen H, Olsen J, Jørgensen J, Gauss J (2001) Chem Phys Lett 342: 200CrossRefGoogle Scholar
  41. 41.
    Höfinger S, Wendland M (2002) Int J Quant Chem 86: 199CrossRefGoogle Scholar
  42. 42.
    Bündgen P, Grein F, Thakkar AJ (1995) J Mol Struct Theochem 334: 7CrossRefGoogle Scholar
  43. 43.
    Tanaka K, Ito H, Tanaka T (1987) J Chem Phys 87: 1557CrossRefGoogle Scholar
  44. 44.
    Doerksen RJ, Thakkar AJ, Koga T, Hayashi M (1999) J Mol Struct 488: 217Google Scholar
  45. 45.
    Davies PB, Neumann RM, Wofsy SC, Klemperer W (1971) J Chem Phys 55: 3564CrossRefGoogle Scholar
  46. 46.
    Woliński K, Sadlej AJ, Karlström G (1991) Mol Phys 72: 425CrossRefGoogle Scholar
  47. 47.
    Kukolich SG (1967) Phys Rev 156: 83CrossRefGoogle Scholar
  48. 48.
    Kelly HM, Fowler PW (1993) Chem Phys Lett 206: 568CrossRefGoogle Scholar
  49. 49.
    Dransfeld A, Chesnut DB (1998) Chem Phys Lett 234: 69Google Scholar
  50. 50.
    Wilson PJ, Tozer DJ (2001) Chem Phys Lett 337: 341CrossRefGoogle Scholar
  51. 51.
    Chesnut DB (2003) Chem Phys Lett 380: 251CrossRefGoogle Scholar
  52. 52.
    Oddershede J, Paiderová I, Spirko V (1992) J Mol Spectrosc 252: 342CrossRefGoogle Scholar
  53. 53.
    Kukolich SG (1975) J Am Chem Soc 97: 5704CrossRefGoogle Scholar
  54. 54.
    van Wüllen C (2000) Phys Chem Chem Phys 2: 2137CrossRefGoogle Scholar
  55. 55.
    Dransfeld A (2004) Chem Phys 298: 47CrossRefGoogle Scholar
  56. 56.
    Jameson CJ, de Dios A, Jameson AK (1990) Chem Phys Lett 167: 575CrossRefGoogle Scholar
  57. 57.
    Urban S, D’Cunha R, Rao KN, Papousek D (1984) Can J Phys 62: 1775Google Scholar
  58. 58.
    Guelachvili G, Abdullah AH, Tu N, Rao KN, Urban S (1989) J Mol Spectrosc 133: 345CrossRefGoogle Scholar
  59. 59.
    Urban S, Spirko V, Papousek D, Kauppinen J, Belov SP, Gershtein LI, Krupnov AF (1981) J Mol Spectrosc 88: 274CrossRefGoogle Scholar
  60. 60.
    Kleiner I, Brown LR, Tarrago G, Kou QL, Piqué N, Guelachvili G, Dana V, Mandin JY (1999) J Mol Spectrosc 193: 46CrossRefGoogle Scholar
  61. 61.
    Cottaz C, Kleiner I, Tarrago G, Brown LR, Margolis JS, Poynter RL, Pickett HM, Fouchet T, Drossart P, Lellouch E (2000) J Mol Spectrosc 203: 285CrossRefGoogle Scholar
  62. 62.
    Cazzoli G, Puzzarini C (2006) J Mol Spectrosc 239: 64CrossRefGoogle Scholar
  63. 63.
    Tarrago G, Nhu MD (1985) J Mol Spectrosc 111: 425CrossRefGoogle Scholar
  64. 64.
    Tarrago G, Lacome N, Lévy A, Guelachvili G, Bézard B, Drossart P (1992) J Mol Spectrosc 154: 30CrossRefGoogle Scholar
  65. 65.
    Ainetsschian A, Häring U, Spiegl G, Kreiner WA (1996) J Mol Spectrosc 181: 99CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dipartimento di Chimica “G. Ciamician”Università di BolognaBolognaItaly

Personalised recommendations