Theoretical Chemistry Accounts

, Volume 119, Issue 5–6, pp 453–462 | Cite as

A theoretical study of thermodynamics and kinetics of nitrosamines: a potential no carrier

Regular Article

Abstract

In this theoretical study, several hybird DFT functionals and MP2 method are used to investigate the properties and the kinetics of a series of nitrosamines. The results show SN or NS transnitrosation reaction to be more favorable via an SN2-like pathway. The stability is predicted to be in the order of H2NNO > cis-MeHNNO > trans-MeHNNO > Me2NNO > trans-PhHNNO > cis-PhHNNO > cis-MeSNO > Ph2NNO > N-methylenenitrous amide, in which Ph2NNO and N-methylenenitrous amide will be potential candidates for the NO donor. For N-methylenenitrous amide, which has the strongest NO donating strength among the titled nitroamines, a nearly perpendicular configuration between H2C=N and NO can plausibly be rationalized by the fact that lone pair of the nitrogen atom on the fragment H2CN must be π-type, not σ-type, to form a mesomeric effect with π*N-O of the NO group. Using the polarizable continuum model to consider the water solvent effect, all the barriers and endothermicities of the transnitrosation reactions are decreased and the correlated %N–H and %N–S are decreased and increased.

Keywords

DFT Nitrosamines SN transnitrosation reaction Mesomeric effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ignarro LJ (1989) Circ Res 65:1Google Scholar
  2. 2.
    Osanai T, Fujiwara N, Saitoh M, Sasaki S, Tomita H, Nakamura M, Osawa H, Yamabe H, Okumura K (2002) Blood Purif 20:466CrossRefGoogle Scholar
  3. 3.
    Ignarro LJ, Buga GM, Word KS, Byrns RE, Chaudhuri G (1987) Proc Natl Acad Sci USA 84:9265CrossRefGoogle Scholar
  4. 4.
    Furchgott RF, Zawadzki JV (1980) Nature 288:373CrossRefGoogle Scholar
  5. 5.
    Pfeiffer S, Mayer B, Hemmens B (1999) Angew Chem Int Ed 38:1714CrossRefGoogle Scholar
  6. 6.
    Fujimori K, Nakajima T (2000) Rev Heteratom Chem 22:181Google Scholar
  7. 7.
    Williams DLH (1999) Acc Chem Res 32:869CrossRefGoogle Scholar
  8. 8.
    Feldman PL, Griffith OW, Stuehr DJ (1993) Chem Eng News Dec 20:26Google Scholar
  9. 9.
    Lü JM, Wittbrodt JM, Wang K, Wen Z, Schlegel BH, Wang PG, Cheng JP (2001) J Am Chem Soc 123:2903CrossRefGoogle Scholar
  10. 10.
    Al-Sa’Doni H, Ferro A (2000) Clin Sci 98:507CrossRefGoogle Scholar
  11. 11.
    de Belder AJ, MacAllistr R, Radomski MW, Moncada S, Valence PJ (1994) Cardiovasc Res 28:691CrossRefGoogle Scholar
  12. 12.
    Bryan NS, Rassaf T, Maloney RE, Rodriguez CM, Saijo F, Rodriguez JR, Feelisch M (2004) Proc Natl Acad Sci USA 101:4308CrossRefGoogle Scholar
  13. 13.
    Turjanski AG, Leonik F, Estrin DA, Rosenstein RE, Doctorovich F (2000) J Am Chem Soc 122:10468CrossRefGoogle Scholar
  14. 14.
    Sonnenschein K, de Groot H, Kirsch M (2004) J Biol Chem 279:45433CrossRefGoogle Scholar
  15. 15.
    Li J, Wang GP, Schlegel HB (2006) Org Biomol Chem 4:1352CrossRefGoogle Scholar
  16. 16.
    Yanagimoto T, Toyota T, Matsuki N, Makino Y, Uchiyama S, Ohwada T (2007) J Am Chem Soc 129:736CrossRefGoogle Scholar
  17. 17.
    Lai C-H, Li EY, Chou P-T (2007) Theor Chem Acc 117:145CrossRefGoogle Scholar
  18. 18.
    Bharatam PV, Amita (2002) Tetrahedron Lett 43:8289CrossRefGoogle Scholar
  19. 19.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreyen JrT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Octhterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Pittsburgh PAGoogle Scholar
  20. 20.
    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503CrossRefGoogle Scholar
  21. 21.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  22. 22.
    Adamo C, Barone V (1998) J Chem Phys 108:664CrossRefGoogle Scholar
  23. 23.
    Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811CrossRefGoogle Scholar
  24. 24.
    Handy NC, Pople JA, Head-Gordon M, Raghavachari K, Trucks GW (1989) Chem Phys Lett 164:185CrossRefGoogle Scholar
  25. 25.
    Carpenter JE, Weinhold F (1988) Theochem 169:41CrossRefGoogle Scholar
  26. 26.
    Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129CrossRefGoogle Scholar
  27. 27.
    Al-Mustafa AH, Sies H, Stahl W (2001) Toxicology 163:127CrossRefGoogle Scholar
  28. 28.
    Lisa A, Peterson LA, Wagener T, Sies H, Stahl W (2007) Chem Res Toxicol 20:721CrossRefGoogle Scholar
  29. 29.
    Adam C, Garcia-Rio L, Leis JR, Ribeiro L (2005) J Org Chem 70:6353CrossRefGoogle Scholar
  30. 30.
    Bartberger MD, Houk KN, Powell SC, Mannion JD, Lo KY, Stamler JS, Toone EJ (2000) J Am Chem Soc 122:5889CrossRefGoogle Scholar
  31. 31.
    Fu Y, Mou Y, Lin B-L, Liu L, Guo Q-X (2002) J Phys Chem A 106:12386CrossRefGoogle Scholar
  32. 32.
    Baciu C, Gauld JW (2003) J Phys Chem A 107:9946CrossRefGoogle Scholar
  33. 33.
    West R (2004) Science 1724Google Scholar
  34. 34.
    Zhu XQ, He JQ, Li Q, Xian M, Lu J, Cheng JP (2000) J Org Chem 65:6729CrossRefGoogle Scholar
  35. 35.
    Cheng JP, Xian M, Wang K, Zhu X, Yin Z, Wang PG (1998) J Am Chem Soc 120:10266CrossRefGoogle Scholar
  36. 36.
    Bulter AR, Williams DLH (1993) Chem Soc Rev 22:233CrossRefGoogle Scholar
  37. 37.
    Lü JM, Wittbrodt JM, Wang K, Wen Z, Schlegel BH, Wang PG, Cheng JP (2001) J Am Chem Soc 123:2903CrossRefGoogle Scholar
  38. 38.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764CrossRefGoogle Scholar
  39. 39.
    Lai C-H, Chou P-T (2007) J Mol Model ASAPGoogle Scholar
  40. 40.
    Houk KN, Hietbrink BN, Bartberger MD, McCarren PR, Cho BY, Voyksner RD, Stamler JS, Toone EJ (2003) J Am Chem Soc 125:6972CrossRefGoogle Scholar
  41. 41.
    Chen TS, Plummer PLM (1985) J Phys Chem 89:3689CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of ChemistryNational Taiwan UniversityTaipeiTaiwan, ROC

Personalised recommendations