Skip to main content
Log in

Shift equations iteration solution to n-level close coupled equations, and the two-level nonadiabatic tunneling problem revisited

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

The shift equations iteration (SEI) solves the n-level quantum scattering problem in one dimension, i.e., the close-coupled equations, free from exponential instability arising from closed channels. SEI provides exponential-instability-free transmission and reflection coefficients, and is well suited to two-sided scattering problems such as conduction in molecular wires. Our most efficient implementation of SEI utilizes an adaptation of the log-derivative symplectic integrator described by Manolopoulos and Gray in (J Chem Phys 102:9214, 1995). The two-level nonadiabatic tunneling system is investigated—in the tunneling regime, above the barrier, and at resonance. Nonadiabatic components in the upper channel wavefunction (and lower channel wavefunction at resonance energies) are found to be non-adiabatic, i.e., not describable by WKB functions. Their behavior is characterized in terms of an empirical model relating these components to adiabatic components in the lower (upper) channel and the potential energy coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nyman G and Yu H-G (2000). Rep Prog Phys 63: 1001

    Article  CAS  Google Scholar 

  2. Laing JR, George TF (1977) Phys Rev A 16:1082 and references therein

  3. Walker RB and Light JC (1976). J Chem Phys 64: 4272

    Google Scholar 

  4. Stechel EB, Walker RB and Light JC (1978). J Chem Phys 69: 3518

    Article  CAS  Google Scholar 

  5. Alexander MH and Manolopoulos DE (1987). J Chem Phys 86: 2044

    Article  CAS  Google Scholar 

  6. Alexander MH, Parlant G and Hemmer TH (1989). J Chem Phys 91: 2388

    Article  CAS  Google Scholar 

  7. Johnson B (1973). J Comput Phys 13: 445

    Article  Google Scholar 

  8. Mrugala F and Secrest D (1983). J Chem Phys 78: 5954

    Article  CAS  Google Scholar 

  9. Mrugala F and Secrest D (1983). J Chem Phys 79: 5960

    Article  CAS  Google Scholar 

  10. Manolopoulos DE (1986). J Chem Phys 85: 6425

    Article  CAS  Google Scholar 

  11. Child MS (1996). Molecular collision theory. Dover, Mineola

    Google Scholar 

  12. Bac̆ić Z, Kress JD, Parker GA and Pack RT (1990). J Chem Phys 92: 2344

    Article  Google Scholar 

  13. Bodo E, Gianturco FA and Dalgarno A (2002). J Chem Phys 116: 9222

    Article  CAS  Google Scholar 

  14. Manolopoulos DE (1997). J Chem Soc Faraday Trans 93: 673

    Article  CAS  Google Scholar 

  15. Echave J (1996). J Chem Phys 104: 1380

    Article  CAS  Google Scholar 

  16. Abrashkevich DG and Brumer P (2001). J Chem Phys 114: 54

    Article  CAS  Google Scholar 

  17. Gianturco FA and Materzanini G (1999). Phys Rev A 60: 1165

    Article  CAS  Google Scholar 

  18. Heath JR and Ratner MA (2003). Phys Today 56: 43

    Article  CAS  Google Scholar 

  19. Nitzan A and Ratner MA (2003). Science 300: 1384

    Article  CAS  Google Scholar 

  20. Sánchez CG, Stamenova M, Sanvito S, Bowler DR, Horsfield AP and Todorov TN (2006). J Chem Phys 124: 214708–1

    Article  CAS  Google Scholar 

  21. Li J and Wang L-W (2005). Phys Rev B 72: 125325

    Article  CAS  Google Scholar 

  22. Landauer R (1957). IBM J Res Dev 1: 223

    Article  Google Scholar 

  23. Nitzan A (2001). Annu Rev Phys Chem 52: 681

    Article  CAS  Google Scholar 

  24. Lam SWK, Dumont RS (unpublished work)

  25. Manolopoulos DE and Gray SK (1995). J Chem Phys 102: 9214

    Article  CAS  Google Scholar 

  26. McLachlan RI and Atela P (1991). Nonlinearity 5: 541

    Article  Google Scholar 

  27. Zhu C and Nakamura H (1994). J Chem Phys 101: 10630

    Article  CAS  Google Scholar 

  28. Zhu C and Nakamura H (1993). J Chem Phys 98: 6208

    Article  CAS  Google Scholar 

  29. Nakamura H (2002). Nonadiabatic transition. World Scientific, Singapore

    Google Scholar 

  30. Dumont RS and Pechukas P (1988). J Chem Phys 89: 5764

    Article  Google Scholar 

  31. von Neumann J and Wigner E (1929). Phys Z 30: 467

    Google Scholar 

  32. Eu BC (1984). Semiclassical theories of molecular scattering. Springer-Verlag, Berlin

    Google Scholar 

  33. Reed M and Simon B (1980). Methods of modern mathematical physics I: functional analysis. Academic, New York

    Google Scholar 

  34. Feschbach H (1958). Ann Phys (NY) 5: 363

    Google Scholar 

  35. Feschbach H and Nenciu G (1991). Rev Mod Phys 63: 91

    Article  Google Scholar 

  36. Dumont RS (2002). J Chem Phys 116: 9158

    Article  CAS  Google Scholar 

  37. Fano U (1961). Phys Rev 124: 1866

    Article  CAS  Google Scholar 

  38. Fano U and Rau ARP (1986). Atomic collision and spectra. Academic, Orlando

    Google Scholar 

  39. Voo K-K, Chu CS (2005) Phys Rev B 72:165307 and references therein

    Google Scholar 

  40. Veenstra CN, van Dijk W, Sprung DWL, Martorell J, arxiv:cond-mat/0411118

  41. Dumont RS, Lam SWK, unpublished work

  42. Ridley EC (1957). Proc Camb Phil Soc 53: 442

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall S. Dumont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumont, R.S., Lam, S.W.K. Shift equations iteration solution to n-level close coupled equations, and the two-level nonadiabatic tunneling problem revisited. Theor Chem Account 119, 383–405 (2008). https://doi.org/10.1007/s00214-007-0395-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0395-2

Keywords

Navigation