Skip to main content
Log in

Structural and vibrational theoretical analysis of protonated formaldehyde in its \(\tilde{X}^{1} A^{\prime}\) ground electronic state

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A structural and vibrational study of protonated formaldehyde (H2COH+) in its ground electronic state, at the CCSD/cc-pVTZ theory level, is presented. The variation of the molecular structure with the torsion angle shows clear dependence of the H2C wagging and COH angles. Anharmonic one- and two-dimensional vibrational models for two out-of-plane vibrational modes (H2C torsion, and H2C wagging) are constructed. Since H2COH+ is classified under a G4 non-rigid group, the vibrational Hamiltonians are factorized using the symmetry of the G4 group and solved variationally. The one-dimensional results for torsion and wagging yield fundamental frequencies are 844.12 and 1,252.89 cm−1, respectively. A two-dimensional COH angle + torsion model gives a torsion frequency of 762.32 cm−1. Finally, a wagging + torsion model predicts frequencies of 931.93 and 1,255.82 cm−1 for torsion and wagging, respectively. The variation of frequency values for torsion suggests an important coupling between this mode and the bending and wagging vibration modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Snyder LE, Buhl D, Zuckerman B and Palmer P (1969). Phys Rev Lett 22: 679–681

    Article  CAS  Google Scholar 

  2. Palmer P, Zuckerman B, Buhl D and Snyder LE (1969). Astrophys J (Lett) 156: L147–L150

    Article  CAS  Google Scholar 

  3. Amano T and Warner HE (1989). Astrophys J 342: L99–L101

    Article  CAS  Google Scholar 

  4. Haney MA and Franklin JL (1969). Trans Faraday Soc 65: 1794–1804

    Article  CAS  Google Scholar 

  5. Ros P (1968). J Chem Phys 49: 4902–4916

    Article  CAS  Google Scholar 

  6. Haney MA, Patel JC and Hayes EF (1970). J Chem Phys 53: 4105–4106

    Article  CAS  Google Scholar 

  7. Schleyer PvR, Jemmis ED, Pople JA (1978) J Chem Soc Chem Commun 190–191

  8. Dill JD, Fischer CL and McLafferty FW (1979). J Am Chem Soc 101(22): 6532–6534

    Google Scholar 

  9. Nobes RH, Radom L and Rodwell WR (1980). Chem Phys Lett 74: 269–272

    Article  CAS  Google Scholar 

  10. DeFrees DJ and McLean AD (1985). J Chem Phys 82: 333–341

    Article  CAS  Google Scholar 

  11. Chomiak D, Taleb-Bendiab A, Civis S and Amano T (1994). Can J Phys 72: 1078–1081

    CAS  Google Scholar 

  12. Ohishi M, Ishikawa SI, Amano T, Oka H, Irvine WM, Dickens JE, Ziurys LM and Apponi AJ (1996). Astrophys J 471: L61–L64

    Article  CAS  Google Scholar 

  13. Purcell KF and Collins JM (1970). J Am Chem Soc 92(3): 465–469

    Article  CAS  Google Scholar 

  14. Ohkubo K, Yoshida T, Tomiyoshi K and Okada M (1976). J Mol Struct 34: 273–281

    Article  CAS  Google Scholar 

  15. Hoffmann MR and Schaefer HF III (1981). Astrophys J 249: 563–565

    Article  CAS  Google Scholar 

  16. Bhattacharyya SP, Rakshit SC and Banerjee M (1983). J Mol Struct (THEOCHEM) 91: 253–261

    Article  Google Scholar 

  17. Dixon DA, Komornicki A and Kraemer WP (1984). J Chem Phys 81(8): 3603–3611

    Article  CAS  Google Scholar 

  18. DeFrees DJ and McLean AD (1986). Chem Phys Lett 131: 403–408

    Article  CAS  Google Scholar 

  19. Apeloig Y, Karni M (1988) J Chem Soc Perkin Trans II 625–636

  20. Helgaker T, Uggerud E and Jensen HJ Aa (1990). Chem Phys Lett 173: 145–150

    Article  CAS  Google Scholar 

  21. Hvistendahl G and Uggerud E (1991). Organic Mass Spectrom 26: 67–73

    Article  CAS  Google Scholar 

  22. Stern PS, Hagler AT, Sussman F and Karpas Z (1991). J Mol Struct (THEOCHEM) 228: 237–248

    Article  Google Scholar 

  23. Johnson RD III and Hudgens JW (1996). J Phys Chem 100: 19874–19890

    Article  CAS  Google Scholar 

  24. Lee TG, Park SC and Kim MS (1996). J Chem Phys 104: 4517–4529

    Article  CAS  Google Scholar 

  25. Suarez D and Sordo TL (1997). J Phys Chem A 101: 1561–1566

    Article  CAS  Google Scholar 

  26. Del Bene JE, Gwaltney SR and Bartlett RJ (1998). J Phys Chem A 102: 5124–5127

    Article  CAS  Google Scholar 

  27. Jursic BS (1998). J Mol Struct (THEOCHEM) 425: 193–199

    Article  CAS  Google Scholar 

  28. Rhee YM and Kim MS (1998). J Chem Phys 109(13): 5363–5371

    Article  CAS  Google Scholar 

  29. Blowers P and Masel RI (2000). J Phys Chem A 104: 34–44

    Article  CAS  Google Scholar 

  30. Oiestad AML and Uggerud E (2000). Int J Mass Spectrom 201: 179–185

    Article  CAS  Google Scholar 

  31. Jalbout AF (2002). J Mol Struct (THEOCHEM) 594: 129–133

    CAS  Google Scholar 

  32. Antol I, Eckert-Maksic M, Müller T, Dallos M and Lischka H (2003). Chem Phys Lett 374: 587–593

    Article  CAS  Google Scholar 

  33. Dyke JM, Ellis AR, Jonathan N, Deddar N and Morris A (1984). Chem Phys Lett 111(3): 207–210

    Article  CAS  Google Scholar 

  34. Dulcey CS and Hudgens JW (1986). J Chem Phys 84(10): 5262–5270

    Article  CAS  Google Scholar 

  35. Marston CC and Balint-Kurti GG (1989). J Chem Phys 91: 3571–3576

    Article  CAS  Google Scholar 

  36. Knowles PJ, Hampel C and Werner H-J (1991). J Chem Phys 99: 5219

    Article  Google Scholar 

  37. Dunning TH (1989). J Chem Phys 90(2): 1007–1023

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, oss JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck D, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski JA, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 Revision A.1 Gaussian Inc Pittsburgh PA

  39. Muñoz-Caro C and Niño A (1994). Computers Chem 18(4): 413–417

    Article  Google Scholar 

  40. Pickett HM (1972). J Chem Phys 56: 1715–1723

    Article  CAS  Google Scholar 

  41. Harthcock MA and Laane J (1985). J Chem Phys 89: 4231–4240

    Article  CAS  Google Scholar 

  42. Niño A and Muñoz-Caro C (1994). Computers Chem 18(1): 27–32

    Article  Google Scholar 

  43. Muñoz-Caro C, Niño A and Moule DC (1994). Chem Phys 186: 221–231

    Article  Google Scholar 

  44. Niño A, Muñoz-Caro C and Moule DC (1995). J Phys Chem 99: 8510–8515

    Article  Google Scholar 

  45. Niño A and Muñoz-Caro C (1995). Computers Chem 19(4): 371–378

    Article  Google Scholar 

  46. LAVCA: General large amplitude vibrational energy levels computation program by Muñoz-Caro C and Niño A

  47. Tennyson J (2000) Chapter 9. Variational calculations of rotation-vibration spectra. In Computational Molecular Spectroscopy Ed. Jensen P and Bunker PR John Wiley & Sons

  48. Niño A, Muñoz-Caro C and Moule DC (1994). J Phys Chem 98(6): 1519–1524

    Article  Google Scholar 

  49. Niño A, Muñoz-Caro C and Moule DC (1994). J Mol Struct (THEOCHEM) 318: 237–242

    Google Scholar 

  50. Muñoz-Caro C, Niño A and Moule DC (1995). J Chem Soc Faraday Trans 91(3): 399–403

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camelia Muñoz-Caro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, M.E., Niño, A. & Muñoz-Caro, C. Structural and vibrational theoretical analysis of protonated formaldehyde in its \(\tilde{X}^{1} A^{\prime}\) ground electronic state. Theor Chem Account 119, 343–354 (2008). https://doi.org/10.1007/s00214-007-0392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0392-5

Keywords

Navigation