Theoretical Chemistry Accounts

, Volume 119, Issue 1–3, pp 211–229 | Cite as

trans-1,2-Dicyano-cyclopropane and other cyano-cyclopropane derivatives

A theoretical and experimental VA, VCD, Raman and ROA spectroscopic study
  • K. J. Jalkanen
  • J. D. Gale
  • G. J. Jalkanen
  • D. F. McIntosh
  • A. A. El-Azhary
  • G. M. Jensen
Regular Article

Abstract

In this work we present the experimental vibrational absorption (VA), vibrational circular dichroism (VCD) and Raman spectra for (+)-trans-1(S),2(S)-dicyanocyclopropane and its dideuterio derivative, trans-1(S),2(S)-dicyano-1(S),2(S)-dideuteriocyclopropane, along with VA, VCD, Raman and Raman optical activity (ROA) spectral simulations. Here we investigate the applicability of various local and non-local exchange-correlation (XC) functionals, hybrids and meta-hybrids to reproduce the vibrational spectra of this strained ring system, which also bears two cyano groups. At the highest level of theory, B3PW91/ aug-cc-pVTZ, we also investigated the trans-, cis- and gem-dicyanocyclopropane (trans-, cis-, and gem-DCCP), cyanocyclopropane (CCP) and the parent molecule cyclopropane (CP). In doing so we have investigated the electronic effects (coupling) between the cyano groups and the cyclopropane ring. In addition to providing an interpretation of the experimentally observed vibrational spectra for these molecules, this work also provides benchmark calculations for other methods, especially semi-empirical based wave function and density functional theory (DFT) based methods, such as SCC-DFTB and PM6. For the semi-empirical DFT based methods to be used for 3-membered ring systems, one ought to document their reliability for systems which were not used in the parameterization. The small 3- and 4-membered ring systems are good test systems because they contain non-standard bonding, which may be difficult to determine accurately with the approximations used in the SCC-DFTB and other semi-empirical methods. Like molecular mechanics force fields, semi-empirical methods, based on DFT and wave function quantum mechanics (WFQM), must be benchmarked against high level ab initio and DFT calculations and experimental data. In addition to bonding, the changes in the electric dipole moment, magnetic dipole moment, electric dipole-electric dipole polarizability, electric dipole-magnetic dipole polarizability and electric dipole-electric quadrupole polarizability with respect to nuclear displacement and nuclear velocity can be determined by the VA, VCD, Raman and ROA intensities. Hence it is important that the semi-empirical based DFT and wave function methods not only be parameterized to determine energies, gradients and Hessians, but also the electric and magnetic moments and their derivatives that determine the electronic and magnetic properties of these molecules and their interactions with matter and radiation. This will allow biochemists, biophysicists, molecular biologists, and physical biologists to use experimental and theoretical VA, VCD, Raman and ROA spectroscopies to probe biophysical and biochemical function and processes at the molecular level.

Keywords

Conformational analysis Vibrational spectroscopy VA VCD Raman and ROA DFT SIESTA CADPAC PBE PBE0 BP91 BLYP B3LYP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jalkanen KJ (1989) Ph.D. thesis, University of Southern California, Los Angeles, CA USAGoogle Scholar
  2. 2.
    Jalkanen KJ, Stephens PJ, Amos RD and Handy NC (1987). J Am Chem Soc 109: 7193 Google Scholar
  3. 3.
    El-Azhary AA (1990) Ph.D. thesis, Department of Chemistry, University of Illinois at Chicago (UIC), Chicago, IL, USAGoogle Scholar
  4. 4.
    El-Azhary AA, Alper JS, Lowe MA and Keiderling TA (1988). Spectrochimica Acta 44A: 1315 Google Scholar
  5. 5.
    Heintz VJ and Keiderling TA (1981). J Am Chem Soc 103: 2395 Google Scholar
  6. 6.
    Schrumpf G and Dunker H (1985). Spectrochim Acta 41: 841 Google Scholar
  7. 7.
    Jalkanen KJ, Bohr HG, Suhai S (1997) In: Suhai S (eds). Proceedings of the international symposium on theoretical and computational genome research. Plenum Press, New York, Spring Street, New York, pp 255–277Google Scholar
  8. 8.
    Tajkhorshid E, Jalkanen KJ and Suhai S (1998). J Phys Chem B 102: 5899 Google Scholar
  9. 9.
    Frimand K, Jalkanen KJ, Bohr HG and Suhai S (2000). Chem Phys 255: 165 Google Scholar
  10. 10.
    Jalkanen KJ, Nieminen RM, Frimand K, Bohr J, Bohr H, Wade RC, Tajkhorshid E and Suhai S (2001). Chem Phys 265: 125 Google Scholar
  11. 11.
    Jalkanen KJ, Degtyarenko IM, Nieminen RM, Cao X, Nafie LA, Zhu F, Barron LD (2007) Theor Chem Acc. doi:10.1007/s00214-007-0276-8 Google Scholar
  12. 12.
    Jalkanen KJ and Suhai S (1996). Chem Phys 208: 81 Google Scholar
  13. 13.
    Deng Z, Polavarapu PL, Ford SJ, Hecht L, Barron LD, Ewig CS and Jalkanen KJ (1996). J Phys Chem 100: 2025 Google Scholar
  14. 14.
    Han W-G, Jalkanen KJ, Elstner M and Suhai S (1998). J Phys Chem B 102: 2587 Google Scholar
  15. 15.
    Bohr HG, Jalkanen KJ, Frimand K, Elstner M and Suhai S (1999). Chem Phys 246: 13 Google Scholar
  16. 16.
    Deplazes E, van Bronswijk B, Zhu F, Barron LD, Ma S, Nafie LA, Jalkanen KJ (2007) Theor Chem Acc doi:10.1007/s00214-007-0361-z Google Scholar
  17. 17.
    Knapp-Mohammady M, Jalkanen KJ, Nardi F, Wade RC and Suhai S (1999). Chem Phys 240: 63 Google Scholar
  18. 18.
    Jalkanen KJ, Nieminen RM, Knapp-Mohammady M and Suhai S (2003). Int J Quantum Chem 92: 239 Google Scholar
  19. 19.
    Bunte SW, Jensen GM, McNesby KL, Goodin DB, Chabalowski CF, Nieminen RM, Suhai S and Jalkanen KJ (2001). Chem Phys 265: 13 Google Scholar
  20. 20.
    Jürgensen VW and Jalkanen KJ (2006). Phys Biol 3: S63 Google Scholar
  21. 21.
    Jalkanen KJ, Jürgensen VW, Claussen A, Rahim A, Jensen GM, Wade RC, Nardi F, Jung C, Degtyarenko IM, Nieminen RM, Herrmann F, Knapp-Mohammady M, Niehaus TA, Frimand K and Suhai S (2006). Int J Quantum Chem 106: 1160 Google Scholar
  22. 22.
    Jalkanen KJ, Jürgensen VW and Degtyarenko IM (2005). Adv Quantum Chem 50: 91 CrossRefGoogle Scholar
  23. 23.
    Jalkanen KJ (2003). J Phys: Condens, Matter 15: S1823 Google Scholar
  24. 24.
    El-Azhary AA and Al-Kahtani AA (2004). J Phys Chem A 108: 9601 Google Scholar
  25. 25.
    El-Azhary AA and Al-Kahtani AA (2005). J Phys Chem A 109: 4505 Google Scholar
  26. 26.
    El-Azhary AA and Al-Kahtani AA (2005). J Phys Chem A 109: 8041 Google Scholar
  27. 27.
    Al-Rusaese S, Al-Kahtani AA and El-Azhary AA (2006). J Phys Chem A 110: 8676 Google Scholar
  28. 28.
    Jalkanen KJ, Gale JD, Lassen PR, Hemmingsen L, Rodarte A, Degtyarenko IM, Nieminen RM, Christensen SB, Knapp- Mohammady M, Suhai S (2007) Theor Chem Acc. doi:10.1007/s00214-007-390-7
  29. 29.
    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S and Seifert G (1998). Phys Rev B 58: 7260 Google Scholar
  30. 30.
    Stewart JJP (2002). J Comp Chem 10: 209 Google Scholar
  31. 31.
    Stewart JJP (1989). J Comp Chem 10: 209, 221 Google Scholar
  32. 32.
    Jacquemin D, Perpete EA, Scalmani G, Frisch MA, Kobayaahi R and Adamo C (2007). J Chem Phys 126: 144105 Google Scholar
  33. 33.
    Yamanaka S, Nakata K, Ukai T, Takada T and Yamaguchi K (2006). Int J Quantum Chem 106: 3312 Google Scholar
  34. 34.
    Walsh TR (2005). Phys Chem Chem Phys 7: 443 Google Scholar
  35. 35.
    Xu X and Goddard WA (2004). Proc Nat Am Soc 101: 2673 Google Scholar
  36. 36.
    Dierksen M and Grimme S (2004). J Phys Chem A 108: 10225 Google Scholar
  37. 37.
    Rydberg H, Dion M, Jacobson N, Schroder E, Hyldgaard P, Simak S, Langreth DC and Lundquist BI (2003). Phys Rev Lett 91: 126402 Google Scholar
  38. 38.
    Wilson PJ, Amos RD and Handy NC (1999). Chem Phys Lett 312: 475 Google Scholar
  39. 39.
    Snijders JG, Baerends EJ and van Gisbergen SJA (1998). J Chem Phys 109: 10644 Google Scholar
  40. 40.
    Kootstra K, Schipper PRT, Gritsenko OV, Snijders JG, Baerends EJ and van Gisbergen SJA (1998). Phys Rev A 57: 2556 Google Scholar
  41. 41.
    Snijders JG, Baerends EJ and van Gisbergen SJA (1996). Chem Phys Lett 259: 599 Google Scholar
  42. 42.
    Kohn W, Meir Y and Makarov DE (1998). Phys Rev Lett 80: 4153 Google Scholar
  43. 43.
    Tozer DJ and Handy NC (1998). J Phys Chem A 102: 3162 Google Scholar
  44. 44.
    Becke AD (1997). J Chem Phys 107: 8554 Google Scholar
  45. 45.
    Becke AD (1996). J Chem Phys 104: 1040 Google Scholar
  46. 46.
    Snijders JG, Baerends EJ and Gisbergen SJA (1995). J Chem Phys 103: 9347 Google Scholar
  47. 47.
    Lee AM and Colwell SM (1994). J Chem Phys 101: 9704 Google Scholar
  48. 48.
    Colwell SM, Murray CW, Handy NC and Amos RD (1993). Chem Phys Lett 210: 261 Google Scholar
  49. 49.
    Handy NC, Tozer DJ, Laming GJ, Murray CW and Amos RD (1993). Isr J Chem 33: 331 Google Scholar
  50. 50.
    Becke AD (1993). J Chem Phys 98: 5648 Google Scholar
  51. 51.
    Becke AD (1992). J Chem Phys 97: 9173 Google Scholar
  52. 52.
    Becke AD (1992). J Chem Phys 96: 2155 Google Scholar
  53. 53.
    Murray CW, Laming GJ, Handy NC and Amos RD (1992). Chem Phys Lett 199: 551 Google Scholar
  54. 54.
    Becke AD (1988). Phys Rev A 38: 3098 Google Scholar
  55. 55.
    Lee C, Yang W and Parr RG (1988). Phys Rev B 37: 785 Google Scholar
  56. 56.
    Shono T, Morikawa T, Okayama R-I and Oda R (1965). Die Makromoleculare Chemie 81: 142 Google Scholar
  57. 57.
    Oda R, Shono T, Oku A and Tako H (1963). Die Makromolekulare Chemie 67: 124 Google Scholar
  58. 58.
    Alberts IL, Andrews JS, Colwell SM, Handy NC, Jayatilaka D, Knowles PJ, Kobayashi R, Laidig KE, Laming G, Lee AM, Maslen PE, Murray CW, Rice JE, Simandiras ED, Stone AJ, Su M-D and Tozer DJ (2001). Cambridge Analytical Derivatives Package (CADPAC), 5th edn. Cambridge University, Cambridge Google Scholar
  59. 59.
    Jalkanen KJ, Devlin F, Polanski T, Amos RD, Handy NC and Stephens PJ (1988). In: 43nd Symposium on molecular spectroscopy. Ohio State University, Columbus OH, USA Google Scholar
  60. 60.
    Jalkanen KJ, Kawiecki RW, Amos RD, Handy NC, Lazzeretti P, Zanasi R and Stephens PJ (1987). In: 42nd Symposium on molecular spectroscopy. Ohio State University, Columbus OH, USA Google Scholar
  61. 61.
    Blom CE and Altona C (1976). Mol Phys 31: 1377 Google Scholar
  62. 62.
    Scott WRP, Huenenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krueger P and Gunsteren WF (1999). J Phys Chem 103: 3596 Google Scholar
  63. 63.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S and Karplus M (1983). J Comp Chem 4: 187 Google Scholar
  64. 64.
    Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K and Schulten K (1999). J Comp Phys 151: 283 Google Scholar
  65. 65.
    Jorgensen WL, Madura JD and Swenson CJ (1984). J Am Chem Soc 106: 6638 Google Scholar
  66. 66.
    Jorgensen WL and Swenson CJ (1985). J Am Chem Soc 107: 569 Google Scholar
  67. 67.
    Jorgensen WL and Swenson CJ (1985). J Am Chem Soc 107: 1489 Google Scholar
  68. 68.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Fergusson DM, Spellmeyer DC, Fox T, Caldwell JW and Kollman PA (1995). J Am Chem Soc 117: 5179 Google Scholar
  69. 69.
    Weiner SJ, Kollman PA, Nguyen DT and Case DA (1986). J Comp Chem 7: 230 Google Scholar
  70. 70.
    Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Weiner P and Profeta S (1984). J Am Chem Soc 106: 765 Google Scholar
  71. 71.
    Maple JR, Hwang M-J, Jalkanen KJ, Stockfisch TP and Hagler AT (1998). J Comp Chem 19: 430 Google Scholar
  72. 72.
    Talman JD and Shadwick WF (1976). Phys Rev A 14: 36 Google Scholar
  73. 73.
    Hirata S, Ivanov S, Grabowski I, Bartlett RJ, Burke K and Talman JD (2001). J Chem Phys 115: 1635 Google Scholar
  74. 74.
    Heaton-Burgess T, Bulat FA and Yang W (2007). Phys Rev Lett 98: 256401 Google Scholar
  75. 75.
    Dunning TH (1970). J Chem Phys 53: 2823 Google Scholar
  76. 76.
    Jalkanen KJ and Stephens PJ (1991). J Phys Chem 95: 5446 Google Scholar
  77. 77.
    Kearley GJ (1995). Nucl Instrum Methods Phys Res A 354: 53 Google Scholar
  78. 78.
    Ordejon P, Artacho E and Soler JM (1996). Phys Rev B (Rapid Comm) 53: R10441 Google Scholar
  79. 79.
    Soler JM, Artacho E, Gale J, Garcia A, Junquera J, Ordejon P and Sanchez-Portal D (2002). J Phys Condens Matter 14: 2745 Google Scholar
  80. 80.
    Perdew JP, Burke K and Ernyerhoh M (1996). Phys Rev Lett 77: 3865 Google Scholar
  81. 81.
    Elstner M, Jalkanen KJ, Knapp-Mohammadi M, Frauenheim Th and Suhai S (2001). Chem Phys 263: 203 Google Scholar
  82. 82.
    Elstner M, Jalkanen KJ, Knapp-Mohammady M, Frauenheim Th, Suhai S (2000) Chem Phys 256Google Scholar
  83. 83.
    Grubmüller H (1995). Phys Rev E 52: 2893 Google Scholar
  84. 84.
    Müller EM, Grubmúller H and Meijere A (2002). J Chem Phys 116: 897 Google Scholar
  85. 85.
    Lange OF, Schäfer LV and Grubmüller H (2006). J Comp Chem 27: 1693 Google Scholar
  86. 86.
    Stephens PJ, Jalkanen KJ, Amos RD, Lazzeretti P and Zanasi R (1990). J Phys Chem 94: 1811 Google Scholar
  87. 87.
    Jalkanen KJ, Stephens PJ, Lazzeretti P and Zanasi R (1988). J Chem Phys 90: 3204 Google Scholar
  88. 88.
    Amos RD, Jalkanen KJ and Stephens PJ (1988). J Phys Chem 92: 5571 Google Scholar
  89. 89.
    Stevens RM, Pitzer RM and Lipscomb WN (1963). J Chem Phys 38: 550 Google Scholar
  90. 90.
    Rohra S and Görling A (2006). Phys Rev Lett 97: 013005 Google Scholar
  91. 91.
    Becke AD (2002). J Chem Phys 117: 6935 Google Scholar
  92. 92.
    Lee AM and Handy NC (1999). Phys Rev A 59: 209 Google Scholar
  93. 93.
    Buehl M, Kaupp M, Malkina OL and Malkin VG (1998). J Comp Chem 20: 91 Google Scholar
  94. 94.
    Colwell S, Handy NC and Lee AM (1996). Phys Rev A 53: 1316 Google Scholar
  95. 95.
    Lee AM, Handy NC and Colwell SM (1995). J Chem Phys 103: 10095 Google Scholar
  96. 96.
    Malkin VG, Malkina OL, Eriksson LA and Salahub DR (1995). Theor Comput Chem Mod Density Funct Theory 2: 273 Google Scholar
  97. 97.
    Malkin VG, Malkina OL, Casida ME and Salahub DR (1994). J Am Chem Soc 116: 5898 Google Scholar
  98. 98.
    Lee AM, Colwell SM and Handy NC (1994). Chem Phys Lett 229: 225 Google Scholar
  99. 99.
    Colwell SM and Handy NC (1994). Chem Phys Lett 217: 271 Google Scholar
  100. 100.
    Malkin VG, Malkina OL and Salahub DR (1993). Chem Phys Lett 204: 80 Google Scholar
  101. 101.
    Malkin VG, Malkina OL and Salahub DR (1993). Chem Phys Lett 204: 87 Google Scholar
  102. 102.
    Vignale G and Rasolt M (1989). Phys Rev B 39: 5475 Google Scholar
  103. 103.
    Vignale G and Rasolt M (1988). Phys Rev B 37: 10685 Google Scholar
  104. 104.
    Vignale G and Rasolt M (1989). Phys Rev Lett 62: 115 Google Scholar
  105. 105.
    Vignale G and Rasolt M (1987). Phys Rev Lett 59: 2360 Google Scholar
  106. 106.
    Hehre WJ, Stewart RF and Pople JA (1969). J Chem Phys 51: 2657 Google Scholar
  107. 107.
    Binkley JS, Pople JA and Hehre WJ (1989). J Am Chem Soc 102: 939 Google Scholar
  108. 108.
    Hehre WJ, Ditchfield R and Pople JA (1972). J Chem Phys 56: 2257 Google Scholar
  109. 109.
    Lowe MA, Alper JS, Kawiecki RW and Stephens PJ (1986). J Phys Chem 90: 41 Google Scholar
  110. 110.
    Lowe MA and Alper JS (1988). J Phys Chem 92: 4035 Google Scholar
  111. 111.
    Kawiecki RW, Devlin F, Stephens PJ, Amos RD and Handy NC (1988). Chem Phys Lett 145: 411 Google Scholar
  112. 112.
    Kawiecki RW (1988) Ph.D. thesis, University of Southern California, Los Angeles, CA, USAGoogle Scholar
  113. 113.
    Kawiecki RW, Devlin FJ, Stephens PJ and Amos RD (1991). J Phys Chem 95: 9817 Google Scholar
  114. 114.
    Dunning TH (1971). J Chem Phys 55: 716 Google Scholar
  115. 115.
    Bartlett RJ, Lotrich VF and Schwiegert IV (2005). J Chem Phys 123: 062205 Google Scholar
  116. 116.
    Bartlett RJ, Grabowski I, Hirata S and Ivanov S (2005). J Chem Phys 122: 034104 Google Scholar
  117. 117.
    El-Azhary AA and Sutter HU (1996). J Phys Chem 100: 15056 Google Scholar
  118. 118.
    El-Azhary AA (2003). Spectrochima Acta A 59: 2009 Google Scholar
  119. 119.
    Bürgi HB (2000). Annu Rev Phys Chem 51: 275 Google Scholar
  120. 120.
    Partal F, Fernandez-Gomez M, Lopez-Gonzalez JJ, Navarro A and Kearley GJ (2000). Chem Phys 261: 239 Google Scholar
  121. 121.
    Kearley GJ, Coddens G, Fillaux F, Tomkinson J and Wegener W (1993). Chem Phys 176: 279 Google Scholar
  122. 122.
    Kearley GJ, Tomkinson J and Penfold J (1987). Zeitschrift für Pysik B 69: 63 Google Scholar
  123. 123.
    Kearley GJ (1986). J Chem Soc Faraday Trans 2(82): 41 Google Scholar
  124. 124.
    Tomkinson J, Warner M and Taylor AD (1984). Mol Phys 51: 381 Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • K. J. Jalkanen
    • 1
  • J. D. Gale
    • 1
  • G. J. Jalkanen
    • 2
    • 3
  • D. F. McIntosh
    • 4
  • A. A. El-Azhary
    • 5
  • G. M. Jensen
    • 6
  1. 1.Nanochemistry Research Institute, Department of Applied ChemistryCurtin University of TechnologyPerthAustralia
  2. 2.HoughtonUSA
  3. 3.Department of Mining EngineeringMichigan Technological UniversityHoughtonUSA
  4. 4.Department of ChemistryUniversity of TorontoTorontoCanada
  5. 5.Department of Chemistry, Faculty of ScienceKing Saud UniversityArriyadSaudi Arabia
  6. 6.Gilead SciencesSan DimasUSA

Personalised recommendations