Skip to main content
Log in

The Si-doped planar tetracoordinate carbon (ptC) unit CAl3Si could be used as a building block or inorganic ligand during cluster-assembly

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Currently, the molecular assembly and growth from a small building block to the bulk compounds have become a focus in various fields. Ever being chemical curiosities, the “anti-van’t Hoff/Le Bel” realm that is associated with tetracoordinate or hypercoordiate planar centers has made vast progress. Being important in the fundamental research areas, the ptC species have potential applications in materials science. The existence of ptC in a divanadium complex and a large number of organometallic compounds have since been reported to possess ptC and these provide us with great hope that many more compounds with ptC building blocks may be synthesized in future. Herein, we report the assembly and stabilization of CAl3Si in both the “homo-decked sandwich” and “hetero-decked sandwich” schemes at the B3LYP/6-311+G(d) level. We show that while the Si-doped indeed introduces much complexity during assembly, the electronic and structural integrity feature of CAl3Si is well conserved during cluster-assembly, characteristic of a “superatom”. This study should be helpful in understanding the hetero-doped assembly mechanism of the ptC chemistry. Moreover, the present results are expected to enrich the flat carbon chemistry, superatom chemistry, metallocenes and combinational chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann R, Alder RW and Wilcox CF (1970). J Am Chem Soc 92: 4992

    Article  CAS  Google Scholar 

  2. Hoffmann R (1971). Pure Appl Chem 28: 181

    CAS  Google Scholar 

  3. Sorger K and Schleyer PvR (1995). J Mol Struct 338: 317

    Google Scholar 

  4. Streitwieser A, Bachrach SM, Dorigo A, Schleyer PvR (1995) In: Sapse A-M, Schleyer PvR (eds) Lithium chemistry; Wiley, New York, p 1

  5. Rottger D and Erker G (1997). Angew Chem Int Ed 36: 812

    Article  CAS  Google Scholar 

  6. Radom L and Rasmussen DR (1977). Pure Appl Chem 70: 1977

    Article  Google Scholar 

  7. Choukroun R and Cassoux P (1999). Acc Chem Res 32: 494

    Article  CAS  Google Scholar 

  8. Siebert W and Gunale A (1999). Chem Soc Rev 28: 367

    Article  CAS  Google Scholar 

  9. Boldyrev AI and Wang L-S (2001). J Phys Chem A 105: 10759

    Article  CAS  Google Scholar 

  10. Minkin VI, Minyaev RM and Hoffmann R (2002). Russ Chem Rev 71: 869

    Article  CAS  Google Scholar 

  11. Keese R (2006). Chem Rev 106: 4787

    Article  CAS  Google Scholar 

  12. Merino G, Méndez-Rojas MA, Vela A and Heine TJ (2007). Comput Chem 28: 362

    Article  CAS  Google Scholar 

  13. Schleyer PvR, Boldyrev AI (1991) J Chem Soc Chem Commun 1536

  14. Boldyrev AI and Schleyer PvR (1991). J Am Chem Soc 113: 9045

    Article  CAS  Google Scholar 

  15. Boldyrev AI and Simons J (1998). J Am Chem Soc 120: 7967

    Article  CAS  Google Scholar 

  16. Ritter SK (2003). Chem Eng News 81(50): 23

    Google Scholar 

  17. Li X, Wang L-S, Boldyrev AI and Simons J (1999). J Am Chem Soc 121: 6033

    Article  CAS  Google Scholar 

  18. Li X, Zhang HF, Wang LS, Geske GD and Boldyrev AI (2000). Angew Chem Int Ed 39: 3630

    Article  CAS  Google Scholar 

  19. Wang LS, Boldyrev AI, Li X and Simons J (2000). J Am Chem Soc 122: 7681

    Article  CAS  Google Scholar 

  20. Wilson E (2000). Chem Eng News 78(34): 8

    Google Scholar 

  21. Geske GD and Boldyrev AI (2002). Inorg Chem 41: 2795

    Article  CAS  Google Scholar 

  22. Zakrzewski VG, Niessen von W, Boldyrev AI and Schleyer PvR (1993). Chem Phys Lett 174: 167

    CAS  Google Scholar 

  23. Nayak SK, Rao BK, Jena P, Li X and Wang LS (1999). Chem Phys Lett 301: 379

    Article  CAS  Google Scholar 

  24. Boldyrev AI, Li X and Wang LS (2000). Angew Chem Int Ed 39: 3307

    Article  CAS  Google Scholar 

  25. Li X, Zhan HJ and Wang LS (2002). Chem Phys Lett 415: 357

    Google Scholar 

  26. Yang LM, Ding YH and Sun CC (2007). Chem Eur J 13: 2546–2555

    Article  CAS  Google Scholar 

  27. Yang LM, Ding YH and Sun CC (2006). Chem Phys Chem 7: 2478–2482

    CAS  Google Scholar 

  28. Yang LM, Ding YH and Sun CC (2007). J Am Chem Soc 129: 658–665

    Article  Google Scholar 

  29. Yang LM, Ding YH and Sun CC (2007). J Am Chem Soc 129: 1900–1901

    Article  CAS  Google Scholar 

  30. Yang LM, Wang J, Ding YH and Sun CC (2007). Organometallics 26: 4449

    Article  CAS  Google Scholar 

  31. Yang LM, Wang J, Ding YH, Sun CC (2007) J Phys Chem A ASAP article, jp074645y

  32. Yang LM, Ding YH, Tian WQ, Sun CC (2007) Phys Chem Chem Phys ASAP article, b707898f

  33. Yang LM, Ding YH, Sun CC (2007) J Phys Chem A (in press)

  34. Wang XB, Wang LS (1997) J Chem Phys 107:7667 and references therein

    Google Scholar 

  35. Kumar V, Bhattacharjee S, Kawazoe Y (2000) Phys Rev B 61:8541 and references therein

    Google Scholar 

  36. Perez N, Heine T, Barthel R, Seifert G, Vela A, Mendez-Rojas MA and Merino G (2005). Org Lett 7: 1509–1512

    Article  CAS  Google Scholar 

  37. Sateesh B, Reddy AS and Sastry GN (2007). J Comp Chem 28: 335–343

    Article  CAS  Google Scholar 

  38. Merino G, Beltran H and Vela A (2006). Inorg Chem 45: 1091–1095

    Article  CAS  Google Scholar 

  39. Padma ME (2004) J Eur J Inorg Chem 2723–2732

  40. Frunzke J, Lein M and Frenking G (2002). Organometallics 21: 3351–3359

    Article  CAS  Google Scholar 

  41. Scherer OJ and Bruck T (1987). Angew Chem 99: 59

    Google Scholar 

  42. Scherer OJ and Bruck T (1987). Angew Chem Int Ed 26: 59

    Google Scholar 

  43. Exner K and Schleyer PvR (2000). Science 290: 1937

    Article  CAS  Google Scholar 

  44. Wang Z-X and Schleyer PvR (2001). Science 292: 2465

    Article  CAS  Google Scholar 

  45. Wang Z-X and Schleyer PvR (2002). Angew Chem Int Ed 41: 4082–4085

    Article  CAS  Google Scholar 

  46. Zhai H-J, Kiran B, Li J and Wang L-S (2003). Nat Mater 2: 827–833

    Article  CAS  Google Scholar 

  47. Zhai HJ, Alexandrova AN, Birch KA, Boldyrev AI and Wang L-S (2003). Angew Chem 115: 6186–6190

    Article  Google Scholar 

  48. Zhai HJ, Alexandrova AN, Birch KA, Boldyrev AI and Wang L-S (2003). Angew Chem Int Ed 42: 6004–6008

    Article  CAS  Google Scholar 

  49. Rasmussen DR and Radom L (1999). Angew Chem Int Ed 38: 2875

    Article  Google Scholar 

  50. Wang ZX, Manojkumar TK, Wannere C and Schleyer PvR (2001). Org Lett 3: 1249

    Article  CAS  Google Scholar 

  51. Wang Z-X and Schleyer PvR (2001). J Am Chem Soc 123: 994

    Article  CAS  Google Scholar 

  52. Sahin Y, Hartmann M, Geiseler G, Schweikart D, Balzereit C, Frenking G, Massa W and Berndt A (2001). Angew Chem Int Ed 40: 2662

    Article  CAS  Google Scholar 

  53. Wang Z-X and Schleyer PvR (2002). J Am Chem Soc 124: 11979

    Article  CAS  Google Scholar 

  54. Merino G, Mendez-Rojas MA and Vela A (2003). J Am Chem Soc 125: 6026–6027

    Article  CAS  Google Scholar 

  55. Merino G, Mendez-Rojas MA, Beltran HI, Corminboeuf C, Heine T and Vela A (2004). J Am Chem Soc 126: 16160

    Article  CAS  Google Scholar 

  56. Priyakumar UD, Reddy AS and Sastry GN (2004). Tetrahedron Lett 45: 2495

    Article  CAS  Google Scholar 

  57. Priyakumar UD and Sastry GN (2004). Tetrahedron Lett 45: 1515

    Article  CAS  Google Scholar 

  58. Pancharatna PD, Mendez-Rojas MA, Merino G, Vela A and Hoffmann R (2004). J Am Chem Soc 126: 15309–15315

    Article  CAS  Google Scholar 

  59. Li SD, Ren GM, Miao CQ and Jin Z-H (2004). Angew Chem Int Ed 43: 1371

    Article  CAS  Google Scholar 

  60. Li S-D, Miao C-Q, Guo J-C and Ren G-M (2004). J Am Chem Soc 126: 16227

    Article  CAS  Google Scholar 

  61. Lein M, Frunzke J and Frenking G (2003). Angew Chem Int Ed 42: 1303–1306

    Article  CAS  Google Scholar 

  62. Li S-D, Ren G-M and Miao C-Q (2004). Inorg Chem 43: 6331

    Article  Google Scholar 

  63. Li SD, Miao CQ, Ren GM (2004) Eur J Inorg Chem 2232–2234

  64. Drhardt S, Frenking G, Chen Z-F and Schleyer PvR (2005). Angew Chem Int Ed 44: 1078

    Article  Google Scholar 

  65. Li S-D, Guo J-C, Miao C-Q and Ren G-M (2005). Angew Chem Int Ed 44: 2158

    Article  CAS  Google Scholar 

  66. Minyaev RM and Gribanova TN (2000). Russ Chem Bull 109: 783–796

    Article  Google Scholar 

  67. Gribanova TN, Minyaev RM, Minkin VI (2001) Mendeleev Commun 169–170

  68. Minyaev RM, Gribanova TN, Starikov AG, Minkin V (2001) I Mendeleev Commun 213–214

  69. Minyaev RM, Gribanova TN, Starikov AG and Minkin V (2002). I Dokl Chem 382: 41–45

    Article  CAS  Google Scholar 

  70. Minkin VI, Minyaev RM (2004) Mendeleev Commun 43–46

  71. Wang Y, Huang YH and Liu R (2006). Z Chem Eur J 12: 3610–3616

    Article  CAS  Google Scholar 

  72. Miller D (1996). A B Nature 384: 307

    Article  CAS  Google Scholar 

  73. Jarrold MF (1991). Science 252: 1085

    CAS  Google Scholar 

  74. Honea EC, Ogura A, Murray CA, Raghavachari K, Sprenger WO, Jarrold MF and Brown WL (1993). Nature 366: 42

    Article  CAS  Google Scholar 

  75. Ho KH, Shvartsburg AA, Pan B, Lu ZY, Wang CZ, Wacker JG, Fye JL and Jarrold M (1998). F Nature 392: 582

    Article  CAS  Google Scholar 

  76. Peckham TJ, Gomez-Elipe P, Manners I (1998) In: Togni A, Halterman RL (eds) Metallocenes, vol. 2. Wiley-VCH, Weinheim, p 724

  77. Togni A, Halternan RL (eds) (1998) Metallocenes: synthesis, reactivity, applications Wiley-VCH, Weinheim

  78. Bergeron DE, Morisato T, Khanna SN and Castleman AW (2004). Science 304: 84–87

    Article  CAS  Google Scholar 

  79. Bergeron DE, Roach PJ, Castleman AW, Jones N and Khanna SN (2005). Science 307: 231–235

    Article  CAS  Google Scholar 

  80. McLean AD and Chandler GS (1980). J Chem Phys 72: 5639–5648

    Article  CAS  Google Scholar 

  81. Clark T, Chandrasekhar J, Spitznagel GW and Schleyer PvR (1983). J Comput Chem 4: 294–299

    Article  CAS  Google Scholar 

  82. Frisch MJ, Pople JA and Binkley JS (1984). J Chem Phys 80: 3265–3269

    Article  CAS  Google Scholar 

  83. Parr RG and Yang W (1989). Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  84. Becke AD (1992). J Chem Phys 96: 2155–2160

    Article  CAS  Google Scholar 

  85. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ and Fiolhais C (1992). Phys Rev B 46: 6671–6687

    Article  CAS  Google Scholar 

  86. Frisch MJ et al (2003) Gaussian03 (RevisionA.1) Gaussian, Inc. Pittsburgh (Full citations see supporting information)

  87. Urnezius E, Brennessel WW, Cramer CJ, Ellis JE and Schleyer PvR (2002). Science 295: 832

    Article  CAS  Google Scholar 

  88. Lein M, Frunzke J and Frenking G (2003). Inorg Chem 42: 2504

    Article  CAS  Google Scholar 

  89. Frunzke J, Lein M and Frenking G (2002). Organometallics. 21: 3351

    Article  CAS  Google Scholar 

  90. Mercero JM and Ugalde JM (2004). J Am Chem Soc 126: 3380

    Article  CAS  Google Scholar 

  91. Mercero JM, Formoso E, Matxain JM, Eriksson LA and Ugalde JM (2006). Chem Eur J 12: 4495–4502

    Article  CAS  Google Scholar 

  92. Mercero JM, Matxain JM and Ugalde JM (2004). Angew Chem Int Ed 43: 5485

    Article  CAS  Google Scholar 

  93. Cheng LP and Li QS (2003). J Phys Chem A 107: 2882

    Article  Google Scholar 

  94. Cheng LP and Li QSJ (2005). Phys Chem A 109: 3182

    Article  CAS  Google Scholar 

  95. Guan J and Li QS (2005). J Phys Chem A 109: 9875

    Article  CAS  Google Scholar 

  96. Merino G, Mendez-Rojas MA and Vela A (2003). J Am Chem Soc 125: 6026–6027

    Article  CAS  Google Scholar 

  97. Merino G, Mendez-Rojas MA, Beltran HI, Corminboeuf C, Heine T and Vela A (2004). J Am Chem Soc 126: 16160

    Article  CAS  Google Scholar 

  98. Pancharatna PD, Mendez-Rojas MA, Merino G, Vela A and Hoffmann R (2004). J Am Chem Soc 126: 15309–15315

    Article  CAS  Google Scholar 

  99. Li X, Kuznetsov AE, Zhang HF, Boldyrev AI and Wang LS (2001). Science 291: 859

    Article  CAS  Google Scholar 

  100. Kuznetsov AE, Boldyrev AI, Li X and Wang L-S (2001). J Am Chem Soc 123: 8825–8831

    Article  CAS  Google Scholar 

  101. Kuznetsov AE, Boldyrev AI, Zhai H-J, Li X and Wang L-S (2002). J Am Chem Soc 124: 11791

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hong Ding.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, LM., Ding, YH. & Sun, CC. The Si-doped planar tetracoordinate carbon (ptC) unit CAl3Si could be used as a building block or inorganic ligand during cluster-assembly. Theor Chem Account 119, 335–342 (2008). https://doi.org/10.1007/s00214-007-0389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0389-0

Keywords

Navigation