Skip to main content
Log in

Theoretical studies on the reactions of hydroxyl radicals with trimethylsilane and tetramethylsilane

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The multiple-channel reactions OH  +  SiH(CH3)3 → products (R1) and the single-channel reaction OH  +  Si(CH3)4 → Si(CH3)3CH2  +  H2O (R2) have been studied by means of the direct dynamics method at the BMC-CCSD//MP2/6-311+G(2d,2p) level. The optimized geometries, frequencies and minimum energy path are all obtained at the MP2/6-311+G(2d,2p) levels, and energy information is further refined by the BMC-CCSD (single-point) level. The rate constants for every reaction channels are calculated by canonical variational transition states theory (CVT) with small-curvature tunneling (SCT) contributions over the temperature range 200–2,000 K. The theoretical total rate constants are in good agreement with the available experimental data, and the three-parameter expression k 1  =  2.53×10−21 T 3.14 exp(1, 352.86/T), k 2 = 6.00 × 10−19 T 2.54 exp(−106.11/T) (in unit of cm3 molecule−1 s−1) over the temperature range 200–2,000 K are given. Our calculations indicate that at the low temperature range, for reaction R1, H-abstraction is favored for the SiH group, while the abstraction from the CH3 group is a minor channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calvert JG, Atkinson R, Kerr JA, Madronich S, Moortgat GK, Wallington TJ and Yarwood G (2000). The mechanisms of atmospheric oxidation of the alkenes. Oxford, New York

    Google Scholar 

  2. Calvert JG, Atkinson R, Becker KH, Kamens RH, Seinfeld JH, Wallington TJ and Yarwood G (2002). The mechanisms of atmospheric oxidation of the aromatic hydrocarbons. Oxford, New York

    Google Scholar 

  3. Goumri A, Yuan J, Hommel EL and Marshall P (2003). Chem Phys Lett 375: 149

    Article  CAS  Google Scholar 

  4. Atkinson R (1991). Environ Sci Technol 25: 863

    Article  CAS  Google Scholar 

  5. Sommerlade R, Parlar H, Wrobel D and Kochs P (1993). Environ Sci Technol 27: 2435

    Article  CAS  Google Scholar 

  6. Tuazon EC, Aschmann SM and Atkinson R (2000). Environ Sci Technol 34: 1970

    Article  CAS  Google Scholar 

  7. Truhlar DG (1995). Direct dynamics method for the calculation of reaction rates. In: Heidrich, D (eds) The reaction path in chemistry: current approaches and perspectives, pp 229. Kluwer, Dordrecht

    Google Scholar 

  8. Truhlar DG, Garrett BC and Klippenstein SJ (1996). J Phys Chem 100: 12771

    Article  CAS  Google Scholar 

  9. Hu WP and Truhlar DG (1996). J Am Chem Soc 118: 860

    Article  CAS  Google Scholar 

  10. Corchado JC, Espinosa-Garcia J, Hu W-P, Rossi L and Truhlar DG (1995). J Phys Chem 99: 687

    Article  CAS  Google Scholar 

  11. Lynch BJ, Zhao Y and Truhlar DG (2005). J Phys Chem A 109: 1643

    Article  CAS  Google Scholar 

  12. Corchado JC, Chuang Y-Y, Fast PL, Villa J, Hu W-P, Liu Y-P, Lynch GC, Nguyen KA, Jackels CF, Melissas VS, Lynch BJ, Rossi I, Coitino EL, Ramos AF, Pu J and Albu TV (2002). POLYRATE version 9.1. Department of Chemistry and Supercomputer Institute. University of Minnesota, Minneapolis

    Google Scholar 

  13. Truhlar DG and Garrett BC (1980). Acc Chem Res 13: 440

    Article  CAS  Google Scholar 

  14. Truhlar DG, Isaacson AD, Garrett BC (1985). In: Baer M (eds) The theory of chemical reaction dynamics, vol 4, CRC P, Boca Raton, p. 65

  15. Duncan WT and Truong TN (1995). J Chem Phys 103: 9642

    Article  CAS  Google Scholar 

  16. Frisch MJ, Head-Gordon M and Pople JA (1990). Chem Phys Lett 166: 275

    Article  CAS  Google Scholar 

  17. Head-Gordon M, Pople JA and Frisch MJ (1988). Chem Phys Lett 153: 503

    Article  CAS  Google Scholar 

  18. Boys SF and Bernardi F (1970). Mol Phys 19: 553

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA and Montgomery JA Jr (2003). Gaussian 03. Gaussian, Inc., Pittsburgh

    Google Scholar 

  20. Steckler R, Hu W-P, Liu Y-P, Lynch GC, Garrett BC, Isaacson AD, Melissas VS, Lu D-P, Troung TN, Rai SN, Hancock GC, Lauderdale JG, Joseph T and Truhlar DG (1995). Comput Phys Commun 88: 341

    Article  CAS  Google Scholar 

  21. Lu DH, Truong TN, Melissas VS, Lynch GC, Liu YP, Grarrett BC, Steckler R, Issacson AD, Rai SN, Hancock GC, Lauderdale JG, Joseph T and Truhlar DG (1992). Comput Phys Commun 71: 235

    Article  CAS  Google Scholar 

  22. Liu Y-P, Lynch GC, Truong TN, Lu D-H, Truhlar DG and Garrett BC (1993). J Am Chem Soc 115: 2408

    Article  CAS  Google Scholar 

  23. Truhlar DG (1991). J Comput Chem 12: 266

    Article  CAS  Google Scholar 

  24. Chuang YY and Truhlar DG (2000). J Chem Phys 112: 1221

    Article  CAS  Google Scholar 

  25. Huber KP, Herzberg G (2005) NIST chemistry webbook, nist standard reference database number 69, June 2005 release constants of diatomic molecules date

  26. Kuchitsu K (1998) In: Structure of free polyatomic molecules basic data. Springer, Berlin, p 58

  27. Hammond GS (1955). J Am Chem Soc 77: 334

    Article  CAS  Google Scholar 

  28. Shimanouchi T (1972) Tables of molecular vibrational frequencies consolidated volume I. National Bureau of Standards, US GPO, Washington, DC

  29. Coblentz Society, Inc (2005) NIST chemistry webbook, NIST standard reference database number 69, June 2005 release, Vibrational frequency date

  30. Shimanouchi T (2005) NIST chemistry webbook, NIST standard reference database number 69, June 2005 release, Vibrational frequency date

  31. Walsh R (1992) In: Martinho Simões JA (eds) Energetica of organometallic species; NATO-ASI series C, 367 Kluwer, Dordrecht Chapter 11

  32. Chase MW Jr (1998). NIST-JANAF themochemical tables, 4th edn. J Phys Chem Ref Data Monogr 9: 1–1951

    Google Scholar 

  33. Ding L and Marshall P (1992). J Am Chem Soc 114: 5754

    Article  CAS  Google Scholar 

  34. Kalinovski IJ, Gutman D, Krasnoperov LN, Goumri A, Yuan W-J and Marshall P (1994). J Phys Chem 98: 9551

    Article  CAS  Google Scholar 

  35. Goumri A, Yuan W-J and Marshall P (1993). J Am Chem Soc 115: 2539

    Article  CAS  Google Scholar 

  36. Ellul R, Potzinger P, Reimann B and Camilleri P (1981). Ber Bunsen-Ges Phys Chem 85: 407

    CAS  Google Scholar 

  37. Doncaster AM and Walsh R (1979). J Chem Soc, Faraday Trans 1(75): 1126

    Google Scholar 

  38. Zhang QZ, Wang SK and Gu YS (2002). J Phys Chem A 106: 3796

    Article  CAS  Google Scholar 

  39. Taghikhani M and Parsafar GA (2005). J Phys Chem A 109: 8158

    Article  CAS  Google Scholar 

  40. Ji YM, Wang L, Li ZS, Liu JY and Sun CC (2006). Chem Phys Chem 7: 1741

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Zhang, GL., Wang, Y. et al. Theoretical studies on the reactions of hydroxyl radicals with trimethylsilane and tetramethylsilane. Theor Chem Account 119, 319–327 (2008). https://doi.org/10.1007/s00214-007-0387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0387-2

Keywords

Navigation