Skip to main content
Log in

Counter-ion effect in the nucleophilic substitution reactions at silicon: a G2M(+) level theoretical investigation

  • Letter
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Three identity nucleophilic substitution reactions at tetracoordinated silicon atom with inversion and retention pathways: Nu +  SiH3Cl → Nu +  SiH3Cl[Nu =  (1)Cl, (2) LiCl, and (3) (LiCl)2], are investigated using the G2M(+) theory. Our results show that changing the nucleophile can shift the mechanism (favorable pathway), stepwise from a single-well PES for reaction 1, via a double-well PES for reaction 2, to a triple-well PES for reaction 3, indicating the importance of steric and electronic effects on the SN2@Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Shaik SS, Schlegel HB and Wolfe S (1992). Theoretical aspects of physical organic chemistry. The SN2 mechanism. Wiley, New York

    Google Scholar 

  2. Laerdahl JK and Uggerud E (2002). Int J Mass Spectrom 214: 277

    Article  CAS  Google Scholar 

  3. Bühl M and Schaefer HF III (1993). J Am Chem Soc 115: 9143

    Article  Google Scholar 

  4. Glukhovtsev MN, Pross A and Radom L (1995). J Am Chem Soc 117: 9012

    Article  CAS  Google Scholar 

  5. Bachrach SM (1990). J Org Chem 55: 1016

    Article  CAS  Google Scholar 

  6. Ren Y, Wolk JL and Hoz S (2002). Int J Mass Spectrom 220: 221

    Article  Google Scholar 

  7. Ciuffarin E and Griselli F (1970). J Am Chem Soc 92: 6015

    Article  CAS  Google Scholar 

  8. Ciuffarin E and Guaraldi G (1970). J Org Chem 35: 2006

    Article  CAS  Google Scholar 

  9. Bachrach SM and Gailbreath BD (2001). J Org Chem 66: 2005

    Article  CAS  Google Scholar 

  10. Bachrach SM and Chamberlin AC (2003). J Org Chem 68: 4743

    Article  CAS  Google Scholar 

  11. Damrauer R, DePuy CH and Bierbaum VM (1982). Organometallics 1: 1553

    Article  CAS  Google Scholar 

  12. Davis LP, Burggraf LW, Gordon MS and Baldridge KK (1985). J Am Chem Soc 107: 4415

    Article  CAS  Google Scholar 

  13. Holmes RR (1990). Chem Rev 90: 17

    Article  CAS  Google Scholar 

  14. Søling TI, Pross A and Radom L (2001). Int J Mass Spectrom 210(211): 1

    Google Scholar 

  15. Bachrach SM and Mulhearn DC (1996). J Phys Chem 100: 3535

    Article  CAS  Google Scholar 

  16. Van Bochove MA, Swart M and Bickelhaupt FM (2006). J Am Chem Soc 128: 10738

    Article  CAS  Google Scholar 

  17. Bento AP and Bickelhaupt FM (2007). J Org Chem 72: 2201

    Article  CAS  Google Scholar 

  18. Fish C, Green M, Kilby RJ, Lynam JM, McGrady JE, Pantazis DA, Russell CA, Whitwood AC and Willans CE (2006). Angew Chem Int Ed 45: 3628

    Article  CAS  Google Scholar 

  19. Winstein S, Savedoff LG, Smith SG, Stevens IDR and Gall JS (1960). Tetrahedron Lett 1: 24

    Article  Google Scholar 

  20. Streitwieser A, Juaristi E, Kim YJ and Pugh J (2000). Org Lett 2: 3739

    Article  CAS  Google Scholar 

  21. Streitwieser A (2006). J Mol Model 12: 673

    Article  CAS  Google Scholar 

  22. Lai ZG and Westaway KC (1989). Can J Chem 67: 21

    Article  CAS  Google Scholar 

  23. Harder S, Streitwieser A, Petty JT and Schleyer PVR (1995). J Am Chem Soc 117: 3253

    Article  CAS  Google Scholar 

  24. Streitwieser A, Choy GSC and Abu-Hasanayn F (1997). J Am Chem Soc 119: 5013

    Article  CAS  Google Scholar 

  25. Leung SSW and Streitwieser A (1998). J Comput Chem 19: 1325

    Article  CAS  Google Scholar 

  26. Ren Y and Chu SY (2004). J Comput Chem 25: 461

    Article  CAS  Google Scholar 

  27. Ren Y and Chu SY (2004). J Phys Chem A 108: 7079

    Article  CAS  Google Scholar 

  28. Ren Y, Gai JG, Xiong Y, Lee KH and Chu SY (2007). J Phys Chem A 111: 6615

    Article  CAS  Google Scholar 

  29. Mebel AM, Morokuma K and Lin MC (1995). J Chem Phys 103: 7414

    Article  CAS  Google Scholar 

  30. Reed AE, Curtiss LA and Weinhold F (1988). Chem Rev 88: 899

    Article  CAS  Google Scholar 

  31. Frisch MJ et al (1998) Gaussian 98, Revision A.9, Gaussian, Pittsburgh

  32. Sommer LH (1973). Intra-Sci Chem Rep 7: 1

    CAS  Google Scholar 

  33. Corriu RJP, Dutheil JP and Lanneau GF (1984). J Am Chem Soc 106: 1060

    Article  CAS  Google Scholar 

  34. Corriu RJP, Dutheil JP, Lanneau GF and Ould-Kada S (1979). Tetrahedron 35: 2889

    Article  CAS  Google Scholar 

  35. Corriu RJP, Lanneau G F and Leclercq D (1983). Phosphorus Sulfur Silicon Relat Elem 18: 197

    Article  CAS  Google Scholar 

  36. Bento AP, Sola M and Bickelhaupt FM (2005). J Comput Chem 26: 1497

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Ren or San-Yan Chu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Y., Wang, X., Chu, SY. et al. Counter-ion effect in the nucleophilic substitution reactions at silicon: a G2M(+) level theoretical investigation. Theor Chem Account 119, 407–411 (2008). https://doi.org/10.1007/s00214-007-0386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0386-3

Keywords

Navigation