Skip to main content
Log in

Geometry, electronic structure and energy barriers of all possible isomers of Fe2C3 nanoparticle

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The search for stable structures of neutral Fe2C3 particle was based on the geometry optimization of the known FeC3 and Fe2C2 isomers with the Fe and C atoms approaching from various directions. The geometry optimization of more than 2,000 initial structures was carried out using the DFT based DMol3 method and converged to 41 stable configurations. The structures containing C3 triangle and the cyclic planar isomer with transannular bonds are found to have the lowest binding energies. The effective charges and total spin densities on the atoms were calculated using integral scheme incorporated in DVM and Hirshfeld procedure of DMol3. The relations between geometrical structures and spin moments ordering are discussed. For the evaluation of potential barriers the geometry optimization of all Fe2C3 configurations was performed with a thermal occupation, corresponding to the various values of the excitation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo BC, Kerns KP and Castleman AW (1992). Science 255: 1411–1413

    Article  CAS  Google Scholar 

  2. Rohmer MM, Benard M and Poblet JM (2000). Chem Rev 100: 495–542

    Article  CAS  Google Scholar 

  3. Liu P and Rodriguez JA (2004). J Chem Phys 120: 5414–5423

    Article  CAS  Google Scholar 

  4. Noya EG, Longo RC and Gallego LJ (2003). J Chem Phys 119: 11130–11134

    Article  CAS  Google Scholar 

  5. Harris H and Dance I (2007). Polyhedron 26: 250–265

    Article  CAS  Google Scholar 

  6. Pilgrim JS and Duncan MA (1993). J Am Chem Soc 115: 6958–6961

    Article  CAS  Google Scholar 

  7. Kan SZ, Lee SA and Freiser BS (1996). J Mass Spectrom 31: 62–68

    Article  CAS  Google Scholar 

  8. Von Heldem G, Tielens AGGM, Van Heijnsbergen D, Duncan MA, Hony S, Waters LBFM and Meijer G (2000). Science 288: 313–316

    Article  Google Scholar 

  9. Ryzhkov MV, Ivanovskii AL and Delley BT (2005). Chem Phys Lett 404: 400–408

    Article  CAS  Google Scholar 

  10. Goedecker S, Hellmann W and Lenosky T (2005). Phys Rev Lett 95: 055501

    Article  CAS  Google Scholar 

  11. Hellmann W, Hennig RG, Goedecker S, Umrigar CJ, Delley B and Lenosky T (2007). Phys Rev B 75: 08541

    Article  CAS  Google Scholar 

  12. Dmol3 β version (1997) Molecular simulations, San Diego

  13. Perdew JP, Burke S and Ernzerhof M (1996). Phys Rev Lett 77: 3865–3868

    Article  CAS  Google Scholar 

  14. Mulliken RS (1955). J Chem Phys 23: 1833–1840

    Article  CAS  Google Scholar 

  15. Hirshfeld FL (1977). Theor Chim Acta 44: 129–138

    Article  CAS  Google Scholar 

  16. Baerends EJ, Ellis DE and Ros P (1973). Chem Phys 2: 41–51

    Article  CAS  Google Scholar 

  17. Press MR and Ellis DE (1987). Phys Rev B 35: 4438–4454

    Article  CAS  Google Scholar 

  18. Ryzhkov MV (1998). J Struct Chem 39: 933–937

    Article  CAS  Google Scholar 

  19. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ and Fiolhais C (1992). Phys Rev B 46: 6671–6687

    Article  CAS  Google Scholar 

  20. Perdew JP (1991). Phys B 172: 1–6

    Article  CAS  Google Scholar 

  21. Lee C, Yang W and Parr RG (1988). Phys Rev B 37: 785–789

    Article  CAS  Google Scholar 

  22. Becke AD (1988). Phys Rev A 38: 3098–3100

    Article  CAS  Google Scholar 

  23. Delley B (2006). J Phys Chem A 110: 13632–13639

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ryzhkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryzhkov, M.V., Ivanovskii, A.L. & Delley, B. Geometry, electronic structure and energy barriers of all possible isomers of Fe2C3 nanoparticle. Theor Chem Account 119, 313–318 (2008). https://doi.org/10.1007/s00214-007-0385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0385-4

Keywords

Navigation