Skip to main content
Log in

Reduced-size polarized basis sets for calculations of molecular electric properties. IV. First-row transition metals

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Recent studies of the perturbation-dependent basis sets have indicated the possibility of a significant reduction of the size of the usual CGTO sets without considerable loss of accuracy in calculations of molecular electric properties. The resulting (ZPolX) basis sets have been developed for several atoms of the first and second row of the Periodic Table. The same method of the ZPolX basis set generation is extended for the first-row transition metals and the corresponding contracted ZPolX basis sets of the size [6s5p3d1f] are determined for both nonrelativistic and scalar relativistic calculations. The performance of the ZPolX basis sets is verified in calculations on the first-row transition metal oxides at the level of the ROHF, ROHF/CASPT2, and ROHF/CCSD(T) approximations. Also the study of the dipole polarizability of TiCl4 confirms the excellent features of these very compact basis sets. The ZPolX basis sets for nonrelativistic and relativistic calculations of molecular electric properties are available on the web page http://www.chem.uni.torun.pl/zchk/basis-sets.html.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonin KD and Kresin VV (1997). Electric-dipole polarizabilities of atoms, molecules and clusters. World Scientific, Singapore

    Google Scholar 

  2. Widmark PO, Malmqvist PÅ and Roos BO (1990). Theor Chim Acta 77: 291

    Article  CAS  Google Scholar 

  3. Widmark PO, Persson BJ and Roos BO (1991). Theor Chim Acta 79: 419

    Article  CAS  Google Scholar 

  4. Pou–Amérigo R, Merchán M, Nebot–Gil I, Widmark PO and Roos BO (1995). Theor Chim Acta 92: 149

    Google Scholar 

  5. Pierloot K, Dumez B, Widmark PO and Roos BO (1995). Theor Chim Acta 90: 87

    CAS  Google Scholar 

  6. Dunning TH (1989). J Chem Phys 90: 1007

    Article  CAS  Google Scholar 

  7. Dunning TH, Harrison RJ and Kendall RA (1992). J Chem Phys 96: 6796–6806

    Article  Google Scholar 

  8. Dunning TH and Woon DE (1993). J Chem Phys 98: 1358–1371

    Article  Google Scholar 

  9. Dunning TH and Woon DE (1994). J Chem Phys 100: 2975–2988

    Article  Google Scholar 

  10. Hehre WJ, Ditchfield R, Stewart RF and Pople JA (1970). J Chem Phys 52: 2769

    Article  CAS  Google Scholar 

  11. Hariharan PC and Pople JA (1973). Theor Chim Acta 28: 213

    Article  CAS  Google Scholar 

  12. Sadlej AJ (1978). Coll Czech Chem Commun 53: 1995

    Article  Google Scholar 

  13. Sadlej AJ (1991). Theor Chim Acta 79: 123

    Article  CAS  Google Scholar 

  14. Černušák I, Kellö V, Sadlej AJ (2003) Coll Czech Chem Commun 68:211, and references therein

  15. Sadlej AJ (1977). Chem Phys Lett 47: 50

    Article  CAS  Google Scholar 

  16. Baranowska A and Sadlej AJ (2004). Chem Phys Lett 398: 270

    Article  CAS  Google Scholar 

  17. Benkova Z, Sadlej AJ, Oakes RE and Bell SEJ (2005). J Comput Chem 26: 145

    Article  CAS  Google Scholar 

  18. Benkova Z, Sadlej AJ, Oakes RE and Bell SEJ (2005). Theor Chem Acc 113: 238

    Article  CAS  Google Scholar 

  19. Torrent M, Sola M, Frenking G (2000) Chem Rev 100:439, and references therein

  20. Harrison JF (2000) Chem Rev 100:679, and references therein

  21. Frenking G, Frölich N (2000) Chem Rev 100:717, and references therein

  22. Steimle TC (2000). Int Rev Phys Chem 19: 455

    Article  CAS  Google Scholar 

  23. Labello NP, Ferreira AM and Kurtz HA (2006). J Phys Chem A 110: 13507

    Article  CAS  Google Scholar 

  24. Barysz M (2003) In: Kaldor U, Wilson S (eds) Theoretical chemistry and physics of heavy and superheavy elements. Kluwer, Dordrecht, p 349, and references therein

  25. Hohm U and Maroulis G (2006). J Chem Phys 124: 124312

    Article  CAS  Google Scholar 

  26. http://www.chem.uni.torun.pl/zchk/basis-sets.html. See also http://www.qch.fns.uniba.sk/baslib.html

  27. Roos BO and Sadlej AJ (1985). Chem Phys 94: 43

    Article  CAS  Google Scholar 

  28. Dodds JL, McWeeny R and Sadlej AJ (1977). Mol Phys 34: 1779

    Article  CAS  Google Scholar 

  29. Huzinaga S (1971). Technical Report. Department of Chemistry. University of Alberta, Alberta, Canada.

    Google Scholar 

  30. McLean AD and Chandler GS (1980). J Chem Phys 82: 5639

    Article  Google Scholar 

  31. Visscher L (2002) In: Schwerdtfeger P (ed) Relativistic electronic structure theory. Part 1. Fundamentals. Elsevier, Amsterdam, p 291, and references therein

  32. Wolf A, Reiher M, Hess BA (2002) In: Schwerdtfeger P (ed) Relativistic electronic structure theory. Part 1. Fundamentals. Elsevier, Amsterdam, p 622, and references therein

  33. Sundholm D (2002) In: Schwerdtfeger P (ed) Relativistic electronic structure theory. Part 1. Fundamentals. Elsevier, Amsterdam, p 758, and references therein

  34. Reiher M (2006). Theor Chem Acc 116: 241

    Article  CAS  Google Scholar 

  35. Barysz M and Sadlej AJ (2001). J Mol Struct (Theochem) 573: 181

    Article  CAS  Google Scholar 

  36. Barysz M and Sadlej AJ (2002). J Chem Phys 116: 2696

    Article  CAS  Google Scholar 

  37. Kȩdziera D and Barysz M (2004). J Chem Phys 121: 6719

    Article  CAS  Google Scholar 

  38. Kutzelnigg W (1997). Chem Phys 225: 203

    Article  CAS  Google Scholar 

  39. Douglas M and Kroll NM (1974). Ann Phys 82: 89

    Article  CAS  Google Scholar 

  40. Hess BA (1985). Phys Rev A 32: 756

    Article  CAS  Google Scholar 

  41. Hess BA (1986). Phys Rev A 33: 3742

    Article  CAS  Google Scholar 

  42. Faegri Jr K, Dyall KG (2002). In: Schwerdtfeger P (ed) Relativistic electronic structure theory. Part 1. Fundamentals. Elsevier, Amsterdam, p 259, and references therein

  43. Andersson K, Barysz M, Bernhardsson A, Blomberg MRA, Cooper DL, Fülscher MP, de Graaf C, Hess BA, Karlström G, Lindh R, Malmqvist P–Å, Nakajima T, Neogrády P, Olsen J, Roos BO, Schimmelpfennig B, Schütz M, Seijo L, Serrano-Andrés L, Siegbahn PEM, Stålring J, Thornsteinsson T, Veryazov V and Widmark PO (2002). Molcas. Version 5.4. Lund University, Lund, Sweden

    Google Scholar 

  44. Andersson K, Barysz M, Bernhardsson A, Blomberg MRA, Carissan Y, Cooper DL, Fülscher MP, Gagliardi L, de Graaf C, Hess BA, Hagberg D, Karlström G, Lindh R, Malmqvist P-Å, Nakajima T, Neogrády P, Olsen J, Raab J, Roos BO, Ryde U, Schimmelpfennig B, Schütz M, Seijo L, Serrano-Andrés L, Siegbahn PEM, Stålring J, Thornsteinsson T, Veryazov V and Widmark PO (2006). Molcas. Version 6.5. Lund University, Lund, Sweden

    Google Scholar 

  45. Neogrády P and Urban M (1995). Int J Quantum Chem 55: 187

    Article  Google Scholar 

  46. Urban M, Neogrády P and HubaČ (1997). Bartlett, RJ (eds) Recent advances in coupled–cluster methods, pp 275–376. World Scientific, Singapore

    Google Scholar 

  47. Andersson K, Malmqvist P-Å, Roos BO, Woliński K and Sadlej AJ (1990). J Phys Chem 94: 5483

    Article  CAS  Google Scholar 

  48. Andersson K, Malmqvist P-Å and Roos BO (1992). J Chem Phys 96: 1218

    Article  CAS  Google Scholar 

  49. Barysz M and Sadlej AJ (1997). Theor Chem Acc 97: 260

    CAS  Google Scholar 

  50. Kellö V and Sadlej AJ (1998). Int J Quantum Chem 68: 159

    Article  Google Scholar 

  51. Kellö V, Sadlej AJ and Hess BA (1996). J Chem Phys 105: 1995

    Article  Google Scholar 

  52. Bauschlicher CW Jr and Maitre P (1995). Theor Chim Acta 90: 189

    CAS  Google Scholar 

  53. Bauschlicher CW Jr and Partridge H (1998). J Chem Phys 109: 8430

    Article  CAS  Google Scholar 

  54. Widmark PO, Roos BO (2006), unpublished data. See the basis set library of Molcas. Version 6.5 [44]

  55. Stiehler J and Hinze J (1995). J Phys B At Mol Opt Phys 28: 4055

    Article  CAS  Google Scholar 

  56. Kłos J (2005). J Chem Phys 123: 024308

    Article  CAS  Google Scholar 

  57. Neogrády P, Kellö V, Urban M and Sadlej AJ (1996). Theor Chim Acta 93: 101

    Article  Google Scholar 

  58. Kellö V and Sadlej AJ (1995). Theor Chim Acta 91: 353

    Google Scholar 

  59. Kellö V and Sadlej AJ (1996). Theor Chim Acta 94: 93

    Google Scholar 

  60. Kȩdziera D (2005). J Chem Phys 123: 074109

    Article  CAS  Google Scholar 

  61. Bederson B and Robinson EJ (1966). Adv Chem Phys 10: 1

    Article  CAS  Google Scholar 

  62. Miller TM and Bederson B (1977). Adv Atom Mol Opt Phys 13: 1

    CAS  Google Scholar 

  63. Miller TM and Bederson B (1977). Adv Atom Mol Opt Phys 25: 37

    Article  Google Scholar 

  64. Gutsev GL, Andrews L and Bauschlicher CW Jr (2003). Theor Chem Acc 109: 298

    CAS  Google Scholar 

  65. Dolg M, Wedig U, Stoll H and Preuss H (1987). J Chem Phys 86: 2123

    Article  CAS  Google Scholar 

  66. Jeung GH and Koutecký (1988). J Chem Phys 88: 3747

    Article  CAS  Google Scholar 

  67. Bauschlicher CW Jr, Langhoff SR and Komornicki A (1990). Theor Chim Acta 77: 263

    Article  CAS  Google Scholar 

  68. Steimle TC, Nachman DF, Shirley JE, Bauschlicher CW Jr and Langhoff SR (1989). J Chem Phys 91: 2049

    Article  CAS  Google Scholar 

  69. Sadlej AJ and Urban M (1991). Chem Phys Lett 176: 293

    Article  CAS  Google Scholar 

  70. Bauschlicher CW Jr and Langhoff SR (1986). J Chem Phys 85: 5936

    Article  CAS  Google Scholar 

  71. Suenram RD, Fraser GT, Lovas FJ and Gillies CW (1991). J Mol Spectrosc 148: 114

    Article  CAS  Google Scholar 

  72. Steimle TC, Gengler J and Hodges PJ (2004). J Chem Phys 121: 12303

    Article  CAS  Google Scholar 

  73. Steimle TC, Nachman DF and Shirley JE (1990). J Chem Phys 90: 5360

    Article  Google Scholar 

  74. Kȩdziera D, Barysz M and Sadlej AJ (2004). Struct Chem 15: 389

    Google Scholar 

  75. Shirley J, Scurlock C and Steimle TC (1990). J Chem Phys 93: 1568

    Article  CAS  Google Scholar 

  76. Steimle TC and Shirley JE (1989). J Chem Phys 91: 8000

    Article  CAS  Google Scholar 

  77. Steimle TC, Nachman DF and Fletcher D (1987). J Chem Phys 87: 5670

    Article  CAS  Google Scholar 

  78. Peterson KA and Dunning TH Jr (1995). J Chem Phys 102: 2032

    Article  CAS  Google Scholar 

  79. Wilson A and Dunning TH Jr (1997). J Chem Phys 106: 8718

    Article  CAS  Google Scholar 

  80. Helgaker T, Klopper W, Koch H and Noga J (1997). J Chem Phys 106: 9639

    Article  CAS  Google Scholar 

  81. Labello NP, Ferreira AM and Kurtz HA (2006). Int J Quantum Chem 106: 3140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej J. Sadlej.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranowska, A., Siedlecka, M. & Sadlej, A.J. Reduced-size polarized basis sets for calculations of molecular electric properties. IV. First-row transition metals. Theor Chem Account 118, 959–972 (2007). https://doi.org/10.1007/s00214-007-0379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0379-2

Keywords

Navigation