Skip to main content
Log in

Study of hydrogen-bonded clusters of 2-methoxyphenol–water

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Various hydrogen-bonded clusters of 2-methoxyphenol (2MP) with water have been analyzed using ab initio methods and Atoms in Molecules (AIM) theory. The intramolecular hydrogen bond energy (and enthalpy) for 2MP was evaluated from two different methods. The results of rotational barriers method are in better agreement with experimental data. Binding energies, vibrational frequencies and geometrical parameters were examined and compared for these complexes. It was shown that in the most stable complex, water acts both as a donor and an acceptor. The “bifurcated” complex was shown to be relatively stable based on energy values. Atoms in Molecules and Natural Bond Orbital (NBO) analysis were used to confirm the existence of hydrogen bonds and to compare the strengths of them. The results obtained from quantum mechanical, AIM and NBO calculations are in agreement with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Heer MI, Mulder P, Korth H-G, Ingold KU, Lusztyk J (2000). J Am Chem Soc 122: 2355–2360

    Article  Google Scholar 

  2. Avila DV, Ingold KU and Lusztyk J (1995). J Am Chem Soc 117: 2929–2930

    Article  CAS  Google Scholar 

  3. Korth H-G, Mulder P and Heer MI (1999). J Org Chem 64: 6969–6975

    Article  Google Scholar 

  4. Wright JS, Carpenter DJ, McKay DJ and Ingold KU (1997). J Am Chem Soc 119: 4245–4252

    Article  CAS  Google Scholar 

  5. Palusiak M and Grabowski SJ (2002). J Mol Struct 642: 97–104

    Article  CAS  Google Scholar 

  6. Spencer JN, Robertson KS and Quick EE (1974). J Phys Chem 78: 2236–2240

    Article  CAS  Google Scholar 

  7. Spencer JN, Heckman RA, Harner RS, Shoop SL and Robertson KS (1973). J Phys Chem 77: 3103–3106

    Article  CAS  Google Scholar 

  8. Fain AV, Berezovsky IN, Chekhov VO, Ukrainskii DL and Esipova NG (2001). Biophysics 46: 921–928

    Google Scholar 

  9. Meyer M, Brandl M and Sühnel J (2001). J Phys Chem A 105: 8223–8225

    Article  CAS  Google Scholar 

  10. Newton MD, Jeffrey GA and Takagi S (1979). J Am Chem Soc 101: 1997–2002

    Article  CAS  Google Scholar 

  11. Kerns RC and Allen LC (1978). J Am Chem Soc 100: 6587–6594

    Article  CAS  Google Scholar 

  12. Kollman PA and Allen LC (1970). J Am Chem Soc 92: 753–759

    Article  CAS  Google Scholar 

  13. Rozas I, Alkorta I and Elguero J (1998). J Phys Chem A 102: 9925–9932

    Article  CAS  Google Scholar 

  14. Kovács A and Hargittai I (1998). J Phys Chem A 102: 3415–3419

    Article  Google Scholar 

  15. Bureiko SF, Golubev NS, Pihlaja K (1999) J Mol Struct 480–481:297–301

    Google Scholar 

  16. Zheng J, Kwak K, Chen X, Asbury JB and Fayer MD (2006). J Am Chem Soc 128: 2977–2987

    Article  CAS  Google Scholar 

  17. Wu R and Brutschy B (2004). Chem Phys Lett 390: 272–278

    Article  CAS  Google Scholar 

  18. Mitsuzuka A, Fujii A, Ebata T and Mikami N (1998). J Phys Chem A 102: 9779–9784

    Article  CAS  Google Scholar 

  19. Wu R, Vaupel S, Nachtigall P and Brutschy B (2004). J Phys Chem A 108: 3338–3343

    Article  CAS  Google Scholar 

  20. Nibu Y, Marui R and Shimada H (2006). J Phys Chem A 110: 9627–9632

    Article  CAS  Google Scholar 

  21. Matsumoto Y, Ebata T and Mikami N (2000). J Mol Struct 552: 257–271

    Article  CAS  Google Scholar 

  22. Yokoyama H, Watanabe H, Omi T, Ishiuchi S-i and Fujii M (2001). J Phys Chem A 105: 9366–9374

    Article  CAS  Google Scholar 

  23. Venkatesan V, Fujii A, Ebata T and Mikami N (2005). J Phys Chem A 109: 915–921

    Article  CAS  Google Scholar 

  24. Li Y, Liu X-H, Wang X-Y and Lou N-Q (1999). J Phys Chem A 103: 2572–2579

    Article  CAS  Google Scholar 

  25. Li S, Weber KH, Tao F-M and Gu R (2006). Chem Phys 323: 397–406

    Article  CAS  Google Scholar 

  26. Zhang B, Cai Y, Mu X, Lou N and Wang X (2002). Chem Phys 276: 277–292

    Article  CAS  Google Scholar 

  27. Jalili S and Akhavan M (2004). J Theor Comput Chem 3: 527–542

    Article  CAS  Google Scholar 

  28. Buemi G and Zuccarello F (2002). J Mol Struct THEOCHEM 581: 71–85

    Article  CAS  Google Scholar 

  29. Koch U and Popelier PLA (1995). J Phys Chem 99: 9747–9754

    Article  CAS  Google Scholar 

  30. Bader RFW (1990). Atoms in molecules—a quantum theory. Oxford University Press, New York

    Google Scholar 

  31. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. In: From solid state to DNA and drug design, Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

  32. Hocquet A (2001). Phys Chem Chem Phys 3: 3192–3199

    Article  CAS  Google Scholar 

  33. Popelier PLA (1998). J Phys Chem A 102: 1873–1878

    Article  CAS  Google Scholar 

  34. Louit G, Hocquet A, Ghomi M, Meyer M and Sühnel J (2002). Phys Chem Comm 5: 94–98

    Google Scholar 

  35. Jalili S and Soleimani M (2006). J Theo Comput Chem 5: 633–645

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 Gaussian, Inc., Pittsburgh, PA

  37. Biegler-König F, Schönbohm J and Bayles D (2001). J Comput Chem 22: 545–559

    Article  Google Scholar 

  38. Jalili S and Akhavan M (2006). J Mol Struct THEOCHEM 765: 105–114

    Article  CAS  Google Scholar 

  39. Scott AP and Radom L (1996). J Phys Chem 100: 16502–16513

    Article  CAS  Google Scholar 

  40. Del Bene JE (1995). J Phys Chem 99: 10705–10707

    Article  CAS  Google Scholar 

  41. Jensen F (1996). Chem Phys Lett 261: 633–636

    Article  CAS  Google Scholar 

  42. Carpenter JE and Weinhold F (1988). J Mol Struct THEOCHEM 169: 41–62

    Article  Google Scholar 

  43. Reed AE, Curtiss LA and Weinhold F (1988). Chem Rev 88: 899–926

    Article  CAS  Google Scholar 

  44. Reed AE, Weinstock RB and Weinhold F (1985). J Chem Phys 83: 735–746

    Article  CAS  Google Scholar 

  45. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1992) NBO, Version 3.1, Gaussian Inc., Pittsburgh, PA

  46. Parra RD, Bulusu S and Zeng XC (2005). J Chem Phys 122: 184325

    Article  Google Scholar 

  47. Szczepanski J, Dibben MJ, Pearson W, Eyler JR and Vala M (2001). J Phys Chem A 105: 9388–9395

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seifollah Jalili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalili, S., Akhavan, M. Study of hydrogen-bonded clusters of 2-methoxyphenol–water. Theor Chem Account 118, 947–957 (2007). https://doi.org/10.1007/s00214-007-0378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0378-3

Keywords

Navigation