Skip to main content
Log in

Geometry prediction of hafnocenes by quantum chemical methods

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The performance of quantum chemical methods for geometry prediction of hafnocenes was evaluated. HF, B3LYP and MP2 in combination with nonrelativistic (MHF) and relativistic (MWB and LANL2DZ) basis sets for hafnium together with standard basis sets 3-21G*, 6-31G* and 6-311G** for other elements were applied. Five basic structural parameters of the optimized structures of the hafnocenes were compared with experimental crystal structures obtained from the Cambridge structural database. Altogether 80 hafnocenes were included in the analysis. The results show that relativistic corrections are necessary for Hf atom. However, even the Hartree–Fock (HF) method, when combined with relativistic pseudopotentials, reproduces the experimental crystal structures with significant accuracy. The good performance of the HF method can be understood to originate from the absence of significant near-degeneracy correlations for hafnium. On average, the B3LYP and MP2 methods provide structural parameters somewhat closer to the experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coates GW (2000). Chem Rev 100: 1223

    CAS  Google Scholar 

  2. Resconi L, Cavallo L, Fait A and Piemontesi F (2000). Chem Rev 100: 1253

    CAS  Google Scholar 

  3. Alt HG and Köppl A (2000). Chem Rev 100: 1205

    CAS  Google Scholar 

  4. Chen EY-X and Marks TJ (2000). Chem Rev 100: 1391

    CAS  Google Scholar 

  5. Hortmann K and Brintzinger H-H (1992). New J Chem 16: 51

    CAS  Google Scholar 

  6. Janiak C, Lange KCH, Versteeg U, Lentz D and Budzelaar PHM (1996). Chem Ber 129: 1517

    CAS  Google Scholar 

  7. Möhring PC and Coville NJ (2006). Coordin Chem Rev 250: 18

    Google Scholar 

  8. Linnolahti M and Pakkanen TA (2000). Macromolecules 33(25): 9205–9214

    CAS  Google Scholar 

  9. Petitjean L, Pattou D and Ruiz-Lopez MF (2001). Tetrahedron 57(14): 2769–2774

    CAS  Google Scholar 

  10. Moscardi G, Resconi L and Cavallo L (2001). Organometallics 20(10): 1918–1931

    CAS  Google Scholar 

  11. Hoelscher M, Keul H and Hoecker H (2002). Macromolecules 35(21): 8194–8202

    CAS  Google Scholar 

  12. Talarico G, Blok ANJ, Woo TK and Cavallo L (2002). Organometallics 21(23): 4939–4949

    CAS  Google Scholar 

  13. Hoelscher M, Keul H and Hoecker H (2003). Organometallics 22(5): 1055–1064

    CAS  Google Scholar 

  14. Maekelae-Vaarne NI, Linnolahti M, Pakkanen TA and Leskelae MA (2003). Macromolecules 36(11): 3854–3860

    CAS  Google Scholar 

  15. Borrelli M, Busico V, Cipullo R, Ronca S and Budzelaar PHM (2003). Macromolecules 36(21): 8171–8177

    CAS  Google Scholar 

  16. Belelli PG, Damiani DE and Castellani NJJ (2004). Mol CatalA-Chem 208(1–2): 147–158

    CAS  Google Scholar 

  17. Sakaki S, Takayama T, Sumimoto M and Sugimoto M (2004). J Am Chem Soc 126(10): 3332–3348

    CAS  Google Scholar 

  18. Jensen VR, Koley D, Jagadeesh MN and Thiel W (2005). Macromolecules 38(24): 10266–10278

    CAS  Google Scholar 

  19. Yang S-Y and Ziegler T (2006). Organometallics 25(4): 887–900

    CAS  Google Scholar 

  20. Yoshida T, Koga N and Morokuma K (1996). Organometallics 15: 766

    CAS  Google Scholar 

  21. Deng L, Ziegler T, Woo TK, Margl P and Fan L (1998). Organometallics 17: 3240

    CAS  Google Scholar 

  22. Margl P, Deng L and Ziegler T (1998). J Am Chem Soc 120: 5517

    CAS  Google Scholar 

  23. Margl P, Deng L and Ziegler T (1998). Organometallics 17: 933

    CAS  Google Scholar 

  24. Margl P, Deng L and Ziegler T (1999). J Am Chem Soc 121: 154

    CAS  Google Scholar 

  25. Wang X, Lu C, Endou A, Kubo M and Miyamoto A (2003). J OrganometChem 678: 156

    CAS  Google Scholar 

  26. Tobisch S and Ziegler T (2004). Organometallics 23: 4077

    CAS  Google Scholar 

  27. Tobisch S and Ziegler T (2005). Organometallics 24: 256

    CAS  Google Scholar 

  28. Pyykko P, Snijders JG and Baerends EJ (1981). Chem Phys Lett 83: 432

    Google Scholar 

  29. Linnolahti M, Hirva P and Pakkanen TA (2001). J Comput Chem 22: 51

    CAS  Google Scholar 

  30. Siegbahn PEM (1996). Adv Chem Phys 93: 333

    CAS  Google Scholar 

  31. Pyykkö P (1988). Chem Rev 88: 563

    Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr.T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian, Inc., Pittsburgh Gaussian 03, Revision A.1

  33. Becke AD (1993). J Chem Phys 98: 5648

    CAS  Google Scholar 

  34. Lee C, Yang W and Parr RG (1988). Phys Rev B 37: 785

    CAS  Google Scholar 

  35. Andrae D, Haeussermann U, Dolg M, Stoll H and Preuss H (1990). Theor Chim Acta 77: 123

    CAS  Google Scholar 

  36. Hay PJ and Wadt WR (1985). J Chem Phys 82: 270

    CAS  Google Scholar 

  37. Wadt WR and Hay PJ (1985). J Chem Phys 82: 284

    CAS  Google Scholar 

  38. Soloveichik GL, Arkhireeva TM, Bel’skii VK and Bulychev BM (1988). Metalloorg Khim Russ Organomet Chem USSR 1: 226

    CAS  Google Scholar 

  39. Xiu-Zhong Zhou, Ying Wang, Shan-Sheng Xu, Hong-Gen Wang and Xin-Kai Yao (1992). Chem Res Chin Univ 8: 239

    Google Scholar 

  40. Ewen JA, Haspeslagh L, Atwood JL and Hongming Zhang (1987). J Am Chem Soc 109: 6544

    CAS  Google Scholar 

  41. Yicheng D, Shen W, Rongguang Z, Shoushan C and Tongbao K (1982). Chin Sci Bull 27: 1436

    Google Scholar 

  42. Grimmond BJ, Corey JY and Rath NP (1999). Organometallics 18: 404

    CAS  Google Scholar 

  43. Hunter WE, Hrncir DC, Bynum RV, Penttila RA and Atwood JL (1983). Organometallics 2: 750

    CAS  Google Scholar 

  44. Rogers RD, Benning MM, Kurihara LK, Moriarty KJ and Rausch MD (1985). J Organomet Chem 293: 51

    CAS  Google Scholar 

  45. Santarsiero BD, Bercaw JE and Asselt A (1986). J Am Chem Soc 108: 8291

    Google Scholar 

  46. Shaver A, McCall JM, Day VW and Vollmer S (1987). Can J Chem 65: 1676

    CAS  Google Scholar 

  47. Churakov AV, Kuz’mina LG, Lemenovskii DA (1999) Obtained from CSD, name GOSWAM

  48. Bohme U and Gunther B (2000). Inorg Chem Commun 3: 136

    CAS  Google Scholar 

  49. VWing-Wah Yam, Gui-Zhong Qi and Kung-Kai Cheung (1998). Organometallics 17: 5448

    Google Scholar 

  50. Woo H-G, Heyn RH and Tilley TD (1992). J Am Chem Soc 114: 5698

    CAS  Google Scholar 

  51. Kim MW, Hong E, Han TK, Woo SI and Do Y (1996). J Organomet Chem 523: 211

    CAS  Google Scholar 

  52. Albrecht N and Weiss E (1988). J Organomet Chem 355: 89

    CAS  Google Scholar 

  53. Lang H, Herres M and Imhof W (1994). J Organomet Chem 465: 283

    CAS  Google Scholar 

  54. Gassman PG and Winter CH (1991). Organometallics 10: 1592

    CAS  Google Scholar 

  55. Sockwell SC, Tanner PS and Hanusa TP (1992). Organometallics 11: 2634

    CAS  Google Scholar 

  56. Schormann M, Roesky HW, Noltemeyer M and Schmidt H-G (2000). J Fluorine Chem 101: 75

    CAS  Google Scholar 

  57. Izmer VV, Agarkov AY, Nosova VM, Kuz’mina LG, Howard JAK, Beletskaya IP, Voskoboynikov AZ (2001) A1. J Chem Soc Dalton Trans 1131

  58. Lindenberg F, Muller U, Pilz A, Sieler J and Hey-Hawkins E (1996). Z Anorg Allg Chem 622: 683

    CAS  Google Scholar 

  59. Rogers RD, Bynum RV and Atwood JL (1984). J Crystallogr Spectrosc Res 14: 21

    CAS  Google Scholar 

  60. Rogers RD, Bynum RV and Atwood JL (1981). J Am Chem Soc 103: 692

    CAS  Google Scholar 

  61. Bristow GS, Lappert MF, Martin TR, Atwood JL, Hunter WF (1984). J Chem Soc Dalton Trans 399

  62. Atwood JL, Hunter WE, Alt H and Rausch MD (1976). J Am Chem Soc 98: 2454

    CAS  Google Scholar 

  63. Erker G, Czisch P, Kruger C and Wallis JM (1985). Organometallics 4: 2059

    CAS  Google Scholar 

  64. Beshouri SM, Chebi DE, Fanwick PE, Rothwell IP and Huffman JC (1990). Organometallics 9: 2375

    CAS  Google Scholar 

  65. Cardin CJ, Cardin DJ, Morton-Blake DA, Parge HE, Roy A (1987) A1. J Chem Soc Dalton Trans 1641

  66. Erker G, Dorf U and Rheingold AL (1988). Organometallics 7: 138

    CAS  Google Scholar 

  67. Sabade MB, Farona MF, Zarate EA and Youngs WJ (1988). J Organomet Chem 338: 347

    CAS  Google Scholar 

  68. Kayser C, Frank D, Baumgartner J and Marschner C (2003). J Organomet Chem 667: 149

    CAS  Google Scholar 

  69. Shiqi D, Shoushan C, Xuexiao G and Xuebao H (1984). Chin Chem J Chin Uni 5: 812

    Google Scholar 

  70. Woo H-G, Heyn RH and Tilley TD (1992). J Am Chem Soc 114: 5698

    CAS  Google Scholar 

  71. Wang J-X, Chen S-S, Wang X-K, Wang H-G and Xuebao H (1993). Chin Acta Chim Sinica 51: 506

    CAS  Google Scholar 

  72. Raab M, Sundermann A, Schick G, Loew A, Nieger M, Schoeller WW and Niecke E (2001). Organometallics 20: 1770

    CAS  Google Scholar 

  73. Kayser C, Kickelbick G and Marschner C (2002). Angew Chem Int Ed Engl 41: 989

    CAS  Google Scholar 

  74. Lappert MF, Raston CL, Skelton BW, White AH (1997) J Chem Soc Dalton Trans 2895

  75. Kekia OM and Rheingold AL (1997). Organometallics 16: 5142

    CAS  Google Scholar 

  76. Kekia OM and Rheingold AL (1997). Organometallics 16: 5142

    CAS  Google Scholar 

  77. Lutz M, Findeis B, Haukka M, Pakkanen TA and Gade LH (2001). Organometallics 20: 2505

    CAS  Google Scholar 

  78. Yousaf SM, Farona MF, Shively Junior RJ and Youngs WJ (1989). J Organomet Chem 363: 281

    CAS  Google Scholar 

  79. Neale NR and Tilley TD (2002). J Am Chem Soc 124: 3802

    CAS  Google Scholar 

  80. Kloppenburg L and Petersen JL (1995). Polyhedron 14: 69

    CAS  Google Scholar 

  81. Jany G, Repo T, Gustafsson M, Klinga M, Abu-Surrah AS and Leskela M (2000). Z Anorg Allg Chem 626: 1897

    CAS  Google Scholar 

  82. Bulls AR, Schaefer WP, Serfas M and Bercaw JE (1987). Organometallics 6: 1219

    CAS  Google Scholar 

  83. Ewen JA, Haspeslagh L, Atwood JL and Hongming Zhang (1987). J Am Chem Soc 109: 6544

    CAS  Google Scholar 

  84. Christopher JN, Jordon RF, Peterson JL and Young VG Jr (1997). Organometallics 16: 3044

    CAS  Google Scholar 

  85. Resconi L, Balboni D, Baruzzi G, Fiori C, Guidotti S, Mercandelli P and Sironi A (2000). Organometallics 19: 420

    CAS  Google Scholar 

  86. Agarkov AY, Izmer VV, Riabov AN, Kuz’mina LG, Howard JAK, Beletskaya IP and Voskoboynikov AZ (2001). J Organomet Chem 619: 280

    CAS  Google Scholar 

  87. Razavi A and Ferrara J (1992). J Organomet Chem 435: 299

    CAS  Google Scholar 

  88. Razavi A and Atwood JL (1993). J Organomet Chem 459: 117

    CAS  Google Scholar 

  89. Razavi A and Thewalt U (2001). J Organomet Chem 621: 267

    CAS  Google Scholar 

  90. Razavi A and Atwood JL (1995). J Organomet Chem 497: 105

    CAS  Google Scholar 

  91. Okuda J, Amor F, du Plooy KE, Eberle T, Hultzsch KC and Spaniol TP (1998). Polyhedron 17: 1073

    CAS  Google Scholar 

  92. Hong E, Jang H, Kim Y, Jeoung SC and Do Y (2001). Adv Mater 13: 1094

    CAS  Google Scholar 

  93. Zhou X-Z, Wang Y, Xu S-S, Wang H-G and Yao X-K (1992). Chem Res Chin Univ 8: 239

    CAS  Google Scholar 

  94. Shaltout RM, Corey JY and Rath NP (1995). J Organomet Chem 503: 205

    CAS  Google Scholar 

  95. Jun Ho Shin, Hascall T and Parkin G (1999). Organometallics 18: 6

    Google Scholar 

  96. Alt HG, Fottinger K and Milius W (1998). J Organomet Chem 564: 109

    CAS  Google Scholar 

  97. Alonso-Moreno C, Antinolo A, Lopez-Solera I, Otero A, Prashar S, Rodriguez AM and Villasenor E (2002). J Organomet Chem 656: 129

    CAS  Google Scholar 

  98. Bai S-D, Wei X-H, Guo J-P, Liu D-S and Zhou Z-Y (1999). Angew Chem Int Ed Engl 38: 1926

    CAS  Google Scholar 

  99. Suzuki N, Masubuchi Y, Yamaguchi Y, Kase T, Miyamoto TK, Horiuchi A and Mise T (2000). Macromolecules 33: 754

    CAS  Google Scholar 

  100. Saldarriaga-Molina CH, Clearfield A and Bernal I (1974). Inorg Chem 13: 2880

    Google Scholar 

  101. Tian G, Wang B, Dai X, Xu S, Zhou X and Sun J (2001). J Organomet Chem 634: 145

    CAS  Google Scholar 

  102. Atwood JL, Hunter WE, Hrncir DC, Samuel E, Alt H and Rausch MD (1975). Inorg Chem 14: 1757

    CAS  Google Scholar 

  103. Bazhenova TA, YuAntipin M, Babkina ON, Bravaya NM, Lyssenko KA, Strelets VV (1997) Izv Akad Nauk SSSR SerKhim Russ Russ Chem Bull 2161

  104. Bruce MD, Coates GW, Hauptman E, Waymouth RM and Ziller JW (1997). J Am Chem Soc 119: 11174

    CAS  Google Scholar 

  105. Dreier T, Erker G, Frohlich R and Wibbeling B (2000). Organometallics 19: 4095

    CAS  Google Scholar 

  106. Alt HG, Jung M and Milius W (1998). J Organomet Chem 558: 111

    CAS  Google Scholar 

  107. Warren TH, Erker G, Frohlich R and Wibbeling B (2000). Organometallics 19: 127

    CAS  Google Scholar 

  108. Erker G, Psiorz V, Frohlich R, Grehl M, Kruger C, Noe R and Nolte M (1995). Tetrahedron 51: 4347

    CAS  Google Scholar 

  109. Psiorz C, Erker G, Frohlich R and Grehl M (1995). Chem Ber 128: 357

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapani A. Pakkanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karttunen, V.A., Linnolahti, M., Pakkanen, T.A. et al. Geometry prediction of hafnocenes by quantum chemical methods. Theor Chem Account 118, 899–913 (2007). https://doi.org/10.1007/s00214-007-0375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0375-6

Keywords

Navigation