Skip to main content

Advertisement

Log in

Multiresolution potential energy surfaces for vibrational state calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A compact and robust many-mode expansion of potential energy surfaces (PES) is presented for anharmonic vibrations of polyatomic molecules, where the individual many-mode terms are approximated with various different resolutions, i.e., electronic structure methods, basis sets, and functional forms. As functional forms, the following three representations have been explored: numerical values on a grid, cubic spline interpolation, and a Taylor expansion. A useful index is proposed which rapidly identifies important many-mode terms that warrant a high resolution. Applications to water and formaldehyde demonstrate that the present scheme can increase the efficiency of the PES computation by a factor of up to 11 with the errors in anharmonic vibrational frequencies being no worse than ~ 10cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herman M, Lievin J, Auwera JV and Campargue A (1999). Global and accurate vibration hamiltonians from high-resolution molecular spectroscopy. Wiley, New York

    Google Scholar 

  2. Bowman JM (1978). J Chem Phys 68: 608

    Article  CAS  Google Scholar 

  3. Gerber RB and Ratner MA (1979). Chem Phys Lett 68: 195

    Article  CAS  Google Scholar 

  4. Bowman JM (1986). Acc Chem Res 19: 202

    Article  CAS  Google Scholar 

  5. Bowman JM, Carter S and Huang X (2003). Int Rev Phys Chem 22: 533

    Article  CAS  Google Scholar 

  6. Gerber RB and Ratner MA (1998). Adv Chem Phys 70: 97

    Article  Google Scholar 

  7. Christiansen O (2004). J Chem Phys 120: 2149

    Article  CAS  Google Scholar 

  8. Carter S, Culik SJ and Bowman JM (1997). J Chem Phys 107: 10458

    Article  CAS  Google Scholar 

  9. Chaban GM, Jung JO and Gerber RB (1999). J Chem Phys 111: 1823

    Article  CAS  Google Scholar 

  10. Matsunaga N, Chaban GM and Gerber RB (2002). J Chem Phys 117: 3541

    Article  CAS  Google Scholar 

  11. Yagi K, Taketsugu T, Hirao K and Gordon MS (2000). J Chem Phys 113: 1005

    Article  CAS  Google Scholar 

  12. Irle S and Bowman JM (2000). J Chem Phys 113: 8401

    Article  CAS  Google Scholar 

  13. Burcl R, Carter S and Handy NC (2003). Chem Phys Lett 373: 357

    Article  CAS  Google Scholar 

  14. Barone V (2004). J Chem Phys 120: 3059

    Article  CAS  Google Scholar 

  15. Barone V (2005). J Chem Phys 122: 014108

    Article  Google Scholar 

  16. Yagi K, Hirao K, Taketsugu T, Schmidt MW and Gordon MS (2004). J Chem Phys 121: 1383

    Article  CAS  Google Scholar 

  17. Taketsugu T, Yagi K and Gordon MS (2005). Int J Quant Chem 104: 758

    Article  CAS  Google Scholar 

  18. Bürger H, Kuna R, Ma S, Breidung J and Thiel W (1994). J Chem Phys 101: 1

    Article  Google Scholar 

  19. Bürger H, Ma S, Breidung J and Thiel W (1996). J Chem Phys 104: 4945

    Article  Google Scholar 

  20. Boese AD and Martin JML (2004). J Phys Chem A 108: 3085

    Article  CAS  Google Scholar 

  21. Begue D, Carbonniere P and Pouchan C (2005). J Phys Chem A 109: 4611

    Article  CAS  Google Scholar 

  22. Kongsted J and Christiansen O (2006). J Chem Phys 125: 124108

    Article  Google Scholar 

  23. Xie T and Bowman JM (2002). J Chem Phys 117: 10487

    Article  CAS  Google Scholar 

  24. Carter S and Handy NC (2002). Chem Phys Lett 352: 1

    Article  CAS  Google Scholar 

  25. Carter S, Bowman JM and Braams BJ (2001). Chem Phys Lett 342: 636

    Article  CAS  Google Scholar 

  26. Rauhut G (2004). J Chem Phys 121: 9313

    Article  CAS  Google Scholar 

  27. Pfluger K, Paulus M, Jagiella S, Burkert T and Rauhut G (2005). Theor Chem Acc 114: 327

    Article  Google Scholar 

  28. Hrenar T, Werner HJ and Rauhut G (2005). Phys Chem Chem Phys 7: 3123

    Article  CAS  Google Scholar 

  29. Yagi K, Taketsugu T and Hirao K (2002). J Chem Phys 116: 3963

    Article  CAS  Google Scholar 

  30. Yagi K, Oyanagi C, Taketsugu T and Hirao K (2003). J Chem Phys 118: 1653

    Article  CAS  Google Scholar 

  31. Oyanagi C, Yagi K, Hirao K and Taketsugu T (2006). J Chem Phys 124: 064311

    Article  Google Scholar 

  32. Maeda S, Watanabe Y and Ohno K (2005). Chem Phys Lett 414: 265

    Article  CAS  Google Scholar 

  33. Rheinecker JL and Bowman JM (2006). J Chem Phys 124: 131102

    Article  Google Scholar 

  34. Rheinecker J and Bowman JM (2006). J Chem Phys 125: 133206

    Article  Google Scholar 

  35. Light JC and Carrington T (2000). Adv Chem Phys 114: 263

    Article  Google Scholar 

  36. Becke AD (1993). J Chem Phys 98: 5648

    Article  CAS  Google Scholar 

  37. Lee C, Yang W and Parr RG (1988). Phys Rev B 37: 785

    Article  CAS  Google Scholar 

  38. Bartlett RJ (1995) In: Yarkony DR (ed) Modern electronic structure theory, vol II. World Scientific, Singapore

  39. Hirata S and Bartlett RJ (2000). Chem Phys Lett 321: 216

    Article  CAS  Google Scholar 

  40. Dunning TH (1989). J Chem Phys 90: 1007

    Article  CAS  Google Scholar 

  41. Stanton JF, Gauss J, Watts JD, Nooijen M, Oliphant N, Perera SA, Szalay PG, Lauderdale WJ, Kucharske SA, Gwaltney SR, Beck S, Balková A, Bernholdt DE, Baeck KK, Rozyczko P, Sekino H, Hober C, Bartlett RJ, ACES2, Quantum Theory Project, University of Florida

  42. Frisch MJ et al (2004) Gaussian 03, Revision C.02, Gaussian, Wallingford

  43. Yagi K (2006). SINDO. University of Tokyo, Tokyo

    Google Scholar 

  44. Tennyson J, Zobov NF, Williamson R, Polyansky OL and Bernath PF (2001). J Phys Chem Ref Data 30: 735

    Article  CAS  Google Scholar 

  45. Bouwens RJ, Hammerschmidt JA, Grzeskowiak MM, Stegink TA, Yorba PM and Polik WF (1996). J Chem Phys 104: 460

    Article  CAS  Google Scholar 

  46. Benedict WS, Gailar N and Plyler EK (1956). J Chem Phys 24: 1139

    Article  CAS  Google Scholar 

  47. Mas EM and Szalewicz K (1996). J Chem Phys 104: 7606

    Article  CAS  Google Scholar 

  48. Kuchitsu K and Kern CW (1962). J Chem Phys 36: 2460

    Article  CAS  Google Scholar 

  49. Gurvich LV, Veyts IV and Alcock CB (1989). Thermodynamic properties of individual substances, 4th edn. Hemisphere Publishing, New York

    Google Scholar 

  50. Duncan JL (1974). Mol Phys 28: 1177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimihiko Hirao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagi, K., Hirata, S. & Hirao, K. Multiresolution potential energy surfaces for vibrational state calculations. Theor Chem Account 118, 681–691 (2007). https://doi.org/10.1007/s00214-007-0363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0363-x

Keywords

Navigation