Abstract
A compact and robust many-mode expansion of potential energy surfaces (PES) is presented for anharmonic vibrations of polyatomic molecules, where the individual many-mode terms are approximated with various different resolutions, i.e., electronic structure methods, basis sets, and functional forms. As functional forms, the following three representations have been explored: numerical values on a grid, cubic spline interpolation, and a Taylor expansion. A useful index is proposed which rapidly identifies important many-mode terms that warrant a high resolution. Applications to water and formaldehyde demonstrate that the present scheme can increase the efficiency of the PES computation by a factor of up to 11 with the errors in anharmonic vibrational frequencies being no worse than ~ 10cm−1.
Similar content being viewed by others
References
Herman M, Lievin J, Auwera JV and Campargue A (1999). Global and accurate vibration hamiltonians from high-resolution molecular spectroscopy. Wiley, New York
Bowman JM (1978). J Chem Phys 68: 608
Gerber RB and Ratner MA (1979). Chem Phys Lett 68: 195
Bowman JM (1986). Acc Chem Res 19: 202
Bowman JM, Carter S and Huang X (2003). Int Rev Phys Chem 22: 533
Gerber RB and Ratner MA (1998). Adv Chem Phys 70: 97
Christiansen O (2004). J Chem Phys 120: 2149
Carter S, Culik SJ and Bowman JM (1997). J Chem Phys 107: 10458
Chaban GM, Jung JO and Gerber RB (1999). J Chem Phys 111: 1823
Matsunaga N, Chaban GM and Gerber RB (2002). J Chem Phys 117: 3541
Yagi K, Taketsugu T, Hirao K and Gordon MS (2000). J Chem Phys 113: 1005
Irle S and Bowman JM (2000). J Chem Phys 113: 8401
Burcl R, Carter S and Handy NC (2003). Chem Phys Lett 373: 357
Barone V (2004). J Chem Phys 120: 3059
Barone V (2005). J Chem Phys 122: 014108
Yagi K, Hirao K, Taketsugu T, Schmidt MW and Gordon MS (2004). J Chem Phys 121: 1383
Taketsugu T, Yagi K and Gordon MS (2005). Int J Quant Chem 104: 758
Bürger H, Kuna R, Ma S, Breidung J and Thiel W (1994). J Chem Phys 101: 1
Bürger H, Ma S, Breidung J and Thiel W (1996). J Chem Phys 104: 4945
Boese AD and Martin JML (2004). J Phys Chem A 108: 3085
Begue D, Carbonniere P and Pouchan C (2005). J Phys Chem A 109: 4611
Kongsted J and Christiansen O (2006). J Chem Phys 125: 124108
Xie T and Bowman JM (2002). J Chem Phys 117: 10487
Carter S and Handy NC (2002). Chem Phys Lett 352: 1
Carter S, Bowman JM and Braams BJ (2001). Chem Phys Lett 342: 636
Rauhut G (2004). J Chem Phys 121: 9313
Pfluger K, Paulus M, Jagiella S, Burkert T and Rauhut G (2005). Theor Chem Acc 114: 327
Hrenar T, Werner HJ and Rauhut G (2005). Phys Chem Chem Phys 7: 3123
Yagi K, Taketsugu T and Hirao K (2002). J Chem Phys 116: 3963
Yagi K, Oyanagi C, Taketsugu T and Hirao K (2003). J Chem Phys 118: 1653
Oyanagi C, Yagi K, Hirao K and Taketsugu T (2006). J Chem Phys 124: 064311
Maeda S, Watanabe Y and Ohno K (2005). Chem Phys Lett 414: 265
Rheinecker JL and Bowman JM (2006). J Chem Phys 124: 131102
Rheinecker J and Bowman JM (2006). J Chem Phys 125: 133206
Light JC and Carrington T (2000). Adv Chem Phys 114: 263
Becke AD (1993). J Chem Phys 98: 5648
Lee C, Yang W and Parr RG (1988). Phys Rev B 37: 785
Bartlett RJ (1995) In: Yarkony DR (ed) Modern electronic structure theory, vol II. World Scientific, Singapore
Hirata S and Bartlett RJ (2000). Chem Phys Lett 321: 216
Dunning TH (1989). J Chem Phys 90: 1007
Stanton JF, Gauss J, Watts JD, Nooijen M, Oliphant N, Perera SA, Szalay PG, Lauderdale WJ, Kucharske SA, Gwaltney SR, Beck S, Balková A, Bernholdt DE, Baeck KK, Rozyczko P, Sekino H, Hober C, Bartlett RJ, ACES2, Quantum Theory Project, University of Florida
Frisch MJ et al (2004) Gaussian 03, Revision C.02, Gaussian, Wallingford
Yagi K (2006). SINDO. University of Tokyo, Tokyo
Tennyson J, Zobov NF, Williamson R, Polyansky OL and Bernath PF (2001). J Phys Chem Ref Data 30: 735
Bouwens RJ, Hammerschmidt JA, Grzeskowiak MM, Stegink TA, Yorba PM and Polik WF (1996). J Chem Phys 104: 460
Benedict WS, Gailar N and Plyler EK (1956). J Chem Phys 24: 1139
Mas EM and Szalewicz K (1996). J Chem Phys 104: 7606
Kuchitsu K and Kern CW (1962). J Chem Phys 36: 2460
Gurvich LV, Veyts IV and Alcock CB (1989). Thermodynamic properties of individual substances, 4th edn. Hemisphere Publishing, New York
Duncan JL (1974). Mol Phys 28: 1177
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yagi, K., Hirata, S. & Hirao, K. Multiresolution potential energy surfaces for vibrational state calculations. Theor Chem Account 118, 681–691 (2007). https://doi.org/10.1007/s00214-007-0363-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00214-007-0363-x