Skip to main content
Log in

Criteria for pericyclic and pseudopericyclic character of electrocyclization of (Z)-1,2,4,6-heptatetraene and (2Z)-2,4,5-hexatriene-1-imine

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electrocyclic reaction mechanisms of (Z)-1,2,4,6-heptatetraene and (2Z)-2,4,5-hexatriene-1-imine were studied by ab initio MO methods. The activation energy barrier height of the electrocyclic reaction of (Z)-1,2,4,6-heptatetraene is extremely a low energy barrier of 8.58 kcal/mol by a MRMP method. The activation energy barrier height of the electrocyclic ring closure of the trans-type of (2Z)-2,4,5-hexatriene-1-imine is lower by 3.18 kcal/mol than that of (Z)-1,2,4,6-heptatetraene. These low energy barriers come from some orbital interactions relating to allene group. For the reaction of (Z)-1,2,4,6-heptatetraene, the interactions of the vertical and side π orbitals of the allene group with another terminal π orbital are important at the transition state. The interaction of the vertical π orbital of allene group with a lone pair orbital of N atom is dominant at the transition state of the reaction of the trans-type of (2Z)-2,4,5- hexatriene-1-imine. The electrocyclic mechanism of the cis-type of (2Z)-2,4,5-hexatriene-1-imine was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross JA, Seiders RP and Lemal DM (1976). J Am Chem Soc 98: 4325

    Article  CAS  Google Scholar 

  2. Chamorro EE and Notario R (2004). J Phys Chem A 108: 4099

    Article  CAS  Google Scholar 

  3. deLera AR, Alvarez R, Lecea B, Torrado A and Cossio FP (2001). Angew Chem Int Ed 40: 557

    Article  CAS  Google Scholar 

  4. deLera AR and Cossio FP (2002). Angew Chem Int Ed 41: 1150

    Article  CAS  Google Scholar 

  5. Rodriguez-Otero J and Cabaleiro-Lago EM (2002). Angew Chem Int Ed 41: 1147

    Article  CAS  Google Scholar 

  6. Rodriguez-Otero J and Cabaleiro-Lago EM (2003). Chem Eur J 9: 1837

    Article  CAS  Google Scholar 

  7. Matito E, Poater J, Duran M and Sola M (2006). Chem Phys Chem 7: 111

    CAS  Google Scholar 

  8. Lopez CS, Faza ON, Cossio FP, York DM and deLera AR (2005). Chem Eur J 11: 1734

    Article  CAS  Google Scholar 

  9. Roos B (1987) In: Lawley KP (ed) Advances in chemical physics, vol 69, part II, Wiley, New York, p 399

  10. Hariharan PC and Pople JA (1973). Theor Chim Acta 28: 213

    Article  CAS  Google Scholar 

  11. Sakai S (2006). J Phys Chem A 110: 9443

    Article  CAS  Google Scholar 

  12. Nakano H (1993). J Chem Phys 99: 7983

    Article  CAS  Google Scholar 

  13. Parr RG and Yang W (1989). Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  14. Becke AD (1988). Phys Rev A 38: 3098

    Article  CAS  Google Scholar 

  15. Lee C, Yang W and Parr RG (1988). Phys Rev B 37: 785

    Article  CAS  Google Scholar 

  16. Fukui K (1970). J Phys Chem 74: 416

    Article  Google Scholar 

  17. Ishida K, Morokuma K and Komornicki A (1977). J Chem Phys 66: 2153

    Article  CAS  Google Scholar 

  18. Cundari TR and Gordon MS (1991). J Am Chem Soc 113: 5231

    Article  CAS  Google Scholar 

  19. Sakai S (1997). J Phys Chem A 101: 1140

    Article  CAS  Google Scholar 

  20. Sakai S (1998). Int J Quantum Chem 70: 291

    Article  CAS  Google Scholar 

  21. Foster JM and Boys SF (1960). Rev Mod Phys 32: 300

    Article  CAS  Google Scholar 

  22. Ivanic J and Ruedenberg K (2001). Theor Chem Acc 106: 339

    Article  CAS  Google Scholar 

  23. Sakai S (1999). J Mol Struc (THEOCHEM) 461–462: 283

    Article  Google Scholar 

  24. Sakai S (2000). J Phys Chem 104: 922

    CAS  Google Scholar 

  25. Sakai S (2000). Int J Quantum Chem 80: 1099

    Article  CAS  Google Scholar 

  26. Sakai S (2000). J Phys Chem A 104: 11615

    Article  CAS  Google Scholar 

  27. Sakai S (2002). Int J Quantum Chem 90: 549

    Article  CAS  Google Scholar 

  28. Lee PS, Sakai S, Horstermann P, Roth WR, Kallel EA and Houk KN (2003). J Am Chem Soc 125: 5839

    Article  CAS  Google Scholar 

  29. Sakai S and Nguyen MT (2004). J Phys Chem A 108: 9169

    Article  CAS  Google Scholar 

  30. Sakai S (2006). J Phys Chem A 110: 6339

    Article  CAS  Google Scholar 

  31. Sakai S (2006). J Phys Chem A 110: 12891

    Article  CAS  Google Scholar 

  32. Schmidt MW, Buldridge KK, Boatz JA, Jensen JH, Koseki S, Gordon MS, Nguyen KA, Windus TL and Elbert ST (1990). QCPE Bull 10: 52

    Google Scholar 

  33. Frisch KJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA. Cheseman JR. Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox E, Hratchian HP, oss JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck D, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03; Gaussian, Inc.: Pittsburgh, PA

  34. Sakai S and Takane S (1999). J Phys Chem A 103: 2878

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shogo Sakai.

Additional information

Contribution of the Mark S. Gordon 65th Birthday Festschrift issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, S. Criteria for pericyclic and pseudopericyclic character of electrocyclization of (Z)-1,2,4,6-heptatetraene and (2Z)-2,4,5-hexatriene-1-imine. Theor Chem Account 120, 177–183 (2008). https://doi.org/10.1007/s00214-007-0312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0312-8

Keywords

Navigation